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Abstract
Over the last decades, the challenges in survival models have been changing consider-
ably and full probabilisticmodeling is crucial inmanymedical applications.Motivated
from a new biological interpretation of cancer metastasis, we introduce a general
method for obtaining more flexible cure rate models. The proposal model extended
the promotion time cure ratemodel. Furthermore, it includes several well-knownmod-
els as special cases and defines many new special models.We derive several properties
of the hazard function for the proposed model and establish mathematical relation-
ships with the promotion time cure rate model. We consider a frequentist approach
to perform inferences, and the maximum likelihood method is employed to estimate
the model parameters. Simulation studies are conducted to evaluate its performance
with a discussion of the obtained results. A real dataset from population-based study
of incident cases of melanoma diagnosed in the state of São Paulo, Brazil, is discussed
in detail.
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1 Introduction andmotivation

In many clinical studies, there is a fraction of patients who are not susceptible to the
occurrence of the event of interest. In this sense, long-term survival models play an
important role and have been used for modeling time-to-event data, such as breast
cancer and melanoma cancer. In a competing risk scenario, the promotion time cure
rate (PTCR) model (Yakovlev and Tsodikov 1996) is one of the most important model
in survival analysis, which has generated several theoretical (Yin and Ibrahim 2005;
Chen and Du 2018) and practical (Tournoud and Ecochard 2007, 2008) researches
focused on the PTCR model.

Motivated from a biological interpretation of cancer metastasis, Chen et al. (1999)
studied the PTCR model with population survival function given by

Spop(t; λ) = exp{−λ [1 − S(t)]}, t > 0,

where λ > 0, exp(−λ) is the long-term survivors or cured rate of the population,
and S(t) is a proper survival function of the susceptible patients. In this model, the
number of concurrent causes (say N , a latent variable) is assumed to be a random
variable following a Poisson distribution. However, the Poisson distribution is not
always suitable, since its mean and variance are the same and this property may lead
to bias in the estimate of the cure probability (Tucker et al. 1990). In the literature,
other authors have considered different probability distributions for the latent variable.
For instance, Rodrigues et al. (2009) studied the Conway–Maxwell–Poisson cure
rate survival models, while Rodrigues et al. (2011) introduced the weighted Poisson
cure rate models, and Rodrigues et al. (2016) proposed the relaxed Poisson cure rate
models, among others. Such distributions assumed an additional parameter in order
to incorporate underdispersion and overdispersion in the distribution of N .

In this paper, we extend the long-term survival model proposed by Chen et al.
(1999) allowing a flexible family of cure rate models (many special cases), which is
characterized by a new natural biological motivation of metastatic cancer. The new
approach gives an interesting and realistic interpretation of the biological mechanism
for the occurrence of the event of interest, which assumes the existence of a random
number of clusters, each one of them with at least one cell. We proposed a cure rate
model to accommodate the characteristics of unobservable stages of carcinogenesis
from lifetime data in the presence of latent concurrent causes. In particular, we assume
that the number of concurrent causes follows a compound Poisson distribution.

The main contributions and advantages of the proposed cure rate model are as
follows: (1) Natural motivation: it is derived from a natural biological motivation
of metastatic cancer (see Fig. 2); (2) Flexibility: the compound Poisson distribution
is able to capture overdispersed and equidispersed activated cells; (3) Mathematical
simplicity: its density and distribution functions have a simple form and do not involve
complicated normalizing constants and/or special functions (see Eq. 3); (4) Special
cases: it includes several well-known models as special cases and defines many new
special models, such as the Hermite, Neyman type A, Thomas, Pólya–Aeppli, dis-
crete stable, Poisson–inverse Gaussian, Poisson–Pascal and Poisson–Tweedie models,
among others. See Table 3 in Wimme and Altman (1996). Furthermore, all special
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cases have the same cure rate; (5) Easy interpretation: it is indexed using by mean
of the time-to-event for the concurrent causes and long-term survivors; (6) Double
regression model: we allow a regression structure on the mean of the time-to-event
for the concurrent causes and the long-term survivors’ parameters (see Eq. (7)). Thus,
we obtain a straightforward interpretation of the regression coefficients in terms of the
expectation of the time-to-event for the cells and the long-term survivors; (7) Model
estimation: estimation and inference are based on the likelihood paradigm (parametric
approach), which can be easily computed using the R programming language (R Core
Team 2020) through of the gamlss environment (Rigby and Stasinopoulos 2005).
Therefore, our model can be easily used by researchers in several areas (see Sect. 3);
(8) Applications: It showed a good performance in the extensive simulation studies
and the applicability using a real dataset (see Sect. 4).

1.1 Motivation: melanoma cancer diagnosed in the state of São Paulo

In public policies and healthcare providers the clinical outcomes are fundamental. In
oncology generally the survival rates, as cancer-specific survival, and/or disease-free
survival rates is the researchers’ main interest. The estimates for such survival rates
can be obtained based on the cancer type and patient features, such as the age at
diagnosis, sex, education level, clinical stage of the disease, type of treatment, and
other available information in medical records. The melanoma-specific survival rates
may vary from 24% to 88% (Gershenwald et al. 2017) after ten years. In Brazil,
approximately 6000 new cases of melanoma were expected according to the Brazilian
National Institute of Cancer (Coordenação de Prevenção e Vigilância 2017); and 7000
according to the International Agency for Research on Cancer (IARC) (Ervik et al.
2016); whereas, approximately 2000 deaths per year are attributable to melanoma in
Brazil (Gershenwald et al. 2017; Ervik et al. 2016).

Considering tumor biology of melanomas, it has been demonstrated that some
tumors may arise from benign lesions (melanocytic naevi). The predominant
pathogenic mechanism that drives the progression of these naevi to melanoma is ultra-
violet (UV) radiation mutagenesis. Other genetic mutations such as BRAFV 600E are
also found, especially in cases where there is no association to sun-damage (Shain and
Bastian 2016). The concept of different cell clusters may be applied in this context.
A greater probability of a long-term survivors is expected when the melanoma cancer
is detected in early stages due to treatment as radical treatment, including surgery. In
the routine clinical patients diagnosed in the clinical stages I or II are treated with
surgery, and most of them will be alive after ten years of follow-up, while patients
with clinical stages advanced other therapies are conducted, and its prognosis is worse
due to its potential for metastatic dissemination. In skin cancer, in special melanoma,
the patient’s death can be attributed to different latent concurrent causes such as the
presence of an unknown number of cancer cells in different clusters.

Even for stage IVmelanomas, response rates after systemic treatments are still vari-
able. It is known that metastatic cells may be very heterogeneous among themselves,
which would lead to mixed (Berrino 2021) or partial (Puglisi 2021) responses patterns
which can be also considered in the different cell cluster concept.

123



Y. M. Gómez et al.

In our study, patients diagnosed with melanoma cancer were enrolled between
2000 and 2014 with follow-up conducted until 2018. All patients were followed after
diagnosed and the death due to cancer was defined as the event of interest. Death due
other causes or lost of follow-up were considered as been right-censored observations.
It is part of a study of skin cancer in 6749 patients diagnosed melanoma in the state
of São Paulo, Brazil. This dataset was initially studied by Calsavara et al. (2020),
which they considered only an observed covariate (surgery) in the modeling. Recently,
Molina et al. (2021), Rodrigues et al. (2021), Leão et al. (2021) andGómez et al. (2021)
considered other covariates available in themedical records, such as sex, clinical stage,
and type of treatment (radiotherapy and chemotherapy). Our aim was to evaluate the
effect of all explanatory variables measured at baseline, such as sex, age at diagnosis,
clinical stage, surgery, radiotherapy, and chemotherapy in both components (failure
rate and long-term survivors).

The dataset is from a retrospective survey of 6749 records of patients diagnosed
with melanoma, of whom 3415 (51%) were female patients, the mean age was 58.04
(standard deviation = 16.36), and 4552 (67%) were in clinical stage I or II. Regard-
ing treatment, 5978 (89%) patients underwent surgery, 587 (9%) patients received
radiotherapy, and 1104 (16%) patients received chemotherapy. A total of 1912 (28%)
events occurred during the follow-up period. The maximum observation time was
approximately 18.54 years, while the median follow-up time was 5.24 years.

The estimated overall survival rates and stratified by surgery, clinical stage, sex,
radiotherapy and chemotherapy were obtained by the Kaplan–Meier (KM) estimator
and are shown in Fig. 1. The estimated curves suggest evidence of long-term survivors,
regardless of the baseline characteristics. Among all of the variables considered in the
study, those with clinical stage I melanoma had a better prognosis, as expected. The
estimated overall 1-, 2-, 5-, and 10-year specific survival rates are 0.896, 0.820, 0.706
and 0.629, respectively.

According to the estimated survival curves (Fig. 1), each observed covariate is
associate with the time-to-event and the long-term survivors. Therefore, in order to
take into account the observed heterogeneity among the patients, we propose a new
cure rate model in the next section.

The rest of the paper is organized as follows. In Sect. 2, we introduce and motivate
the newcure ratemodels and discuss someof its properties. Furthermore, some specific
models obtained as special cases from the general model are detailed. In Sect. 3, we
describe the maximum likelihood estimation procedure. A Monte Carlo simulation is
presented in Sect. 4 in order to evaluate the finite-sample behavior of the maximum
likelihood estimators. A real data set from skin cancer also is discussed in Sect. 4.
Finally, some conclusions are given in Sect. 5.

2 The new cure rate model

In this section, we introduce the new cure rate model, its main properties and some
especial cases.
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Fig. 1 Estimated survival curve obtained via Kaplan–Meier estimator for melanoma dataset for the overall,
surgery, clinical stage, sex, radiotherapy, and chemotherapy

2.1 Formulation

Let N the number of clusters of cells for an individual left active after the initial
treatment, and conditional on N = n ≥ 1, ϒ j , j = 1, . . . , N , be independent and
identically distributed variables with the range being contained in N = {1, 2, . . .},
independent of N , indicating the number of cells in j th cluster, with probability mass
function Pr(ϒ j = i; τ) = τi . Consider D be the total number of malignant cells (not
eliminated by the treatment) defined by

D =

⎧
⎪⎪⎨

⎪⎪⎩

N∑

j=1
ϒ j , if N ≥ 1,

0, if N = 0.

We assume that the number of clusters of cells (N ) follows a Poisson distribution
with mean λ. In this case, the random variable D is said to have a compound Pois-
son (CP) distribution, where Pr(D = 0) = e−λ. The mean and variance of D are,
respectively

E(D) ≡ μD = E(N )E(ϒ) and Var(D) ≡ σ 2
D = E(N )E(ϒ2).
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Fig. 2 Representation of the proposed model in a diagrammatic form

The dispersion index of the compound Poisson distribution is given by

σ 2
D

μD
= 1 + E(ϒ(ϒ − 1))

E(ϒ)
,

which means that the compound Poisson distribution is an over-dispersed model. The
distribution of D is equi-dispersed if and only if E(ϒ2) = E(ϒ).

Denote the probability generating function (pgf) of the ϒi (compounding distribu-
tion) by
ϕϒ(s) := E(sϒ) = ∑ν

j=1 s
jτ j , where

∑ν
j=1 τ j = 1 and ν denotes the upper limit

of the range (it allows the case ν = ∞). In the case of a finite range with upper limit
ν < ∞ and τν > 0, the expression of the pgf is reduced to ϕϒ(s) = τ1s + · · · + τνsν .
Then, the pgf of D, denoted by ϕD(s), is given by

ϕD(s) = ϕN (ϕϒ(s)) = eλ(ϕϒ(s)−1) = e
λ

(
ν∑

j=1
s j τ j−1

)

= e
λ

(
ν∑

j=1
(s j τ j−τ j )

)

= e
λ

(
ν∑

j=1
τ j (s j−1)

)

. (1)

A random variable D with pgf (1) is denoted by CPν(λ, ϕ) (possibly ν = ∞).
We assume that the V1, V2, . . . , are independent and identically distributed random

variables representing the promotion times of the concurrent causes, independent of
D, with survival function (SF) S(·; θ), where θ is a vector of parameters. S(·; θ) is
proper in the sense that limt→∞ S(t; θ) = 0. In the concurrent causes scenario, the
number of clusters of cells (N ), the number of cells in j th cluster (ϒ j ), the total number
of cells (D), and the times Vk are all unobservable variables (latent variables). Thus,
the observable time-to-event (which is the event of interest) in a given individual is
defined by the random variable T = min{V1, . . . , VD} for D ≥ 1, and T = ∞ if
D = 0. Figure 2 illustrates this interpretation.

Remark 2.1 When ϒ1 = ϒ2 = · · · = ϒN = 1 the proposed model is reduced to the
PTCR model (Yakovlev and Tsodikov 1996; Chen et al. 1999).
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In this work, we assumed the minimum among V1, V2, . . . , because from a bio-
logical point of view, it seems appropriated that one carcinogenic cell can trigger the
metastatic process. However, following the idea discussed in Kim et al. (2011) the
model should be considered in a more general framework based on the threshold cure
rate (TCR). In this scheme, it is assumed the existence of a random variable R ≤ 1,
independent from V1, V2, . . . ,. In simple words, R denotes the threshold to an indi-
vidual to be considered as cured. The particular cases R = 1, R = N and R with
discrete uniform distribution on 1, . . . , N were discussed in Cooner et al. (2007) and
are known in the literature as the first activation, last activation and random activation
schemes, respectively. However, Kim et al. (2011) also discuss other general cases
where the distribution of R not depend on N . For instance, R fixed at an arbitrary
value (say R0), with shifted geometric or the shifted Poisson distributions.

Under this setup, the population SF, Spop(·), can be computed as

Spop(t; ξ) = ϕN (ϕϒ(S(t; θ))) = exp

⎧
⎨

⎩
−λ

⎡

⎣1 −
ν∑

j=1

τ j

(
S(t; θ) j

)
⎤

⎦

⎫
⎬

⎭
, t > 0,

(2)

which depends on a parameter vector ξ = (θ , λ, τ )� and S(·; θ) denotes the SF of the
promotion times of the concurrent causes, which is a proper function in the sense that
S(∞; θ) = 0. We also assumed that μ ⊂ θ represents the mean of this distribution
(mean of the time-to-event of the carcinogenic cells), whichmust exist. The population
density and population hazard rate (HR) functions are given by

fpop(t; ξ) = λ f (t; θ)

ν∑

j=1

j τ j

(
S(t; θ) j−1

)
exp

⎧
⎨

⎩
−λ

⎡

⎣1 −
ν∑

j=1

τ j

(
S(t; θ) j

)
⎤

⎦

⎫
⎬

⎭
,

t > 0, (3)

and

hpop(t; ξ) = λ f (t; θ)

ν∑

j=1

j τ j S(t; θ) j−1 = λ h(t; θ)

ν∑

j=1

j τ j S(t; θ) j , t > 0,

(4)

where f (t; θ) = −dS(t; θ)/dt denotes the (proper) PDF of the time-to-event T in (2)
and h(t; θ) = f (t; θ)/S(t; θ) is the proper HR function of the time-to-event T .

Proposition 2.1 It follows from (4) that

(i) hpop(t; ξ) = hprom(t; ξ)E(ϒ S(t; θ)ϒ−1),
(ii) hpop(t; ξ) ≥ hprom(t; ξ),

where hprom(t; ξ) = λ f (t; θ) is the improper HR function related to the PTCR model
and E(ϒ S(t; θ)ϒ−1) = ∑ν

j=1 j τ j S(t; θ) j−1. the equality in (ii) is attained only if
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τ1 = 1 and τ2 = τ3 = · · · = 0, which corresponds to the PTCR model as we will
show in the Example 2.1.

From (2), the cured fraction (p0) is given by

p0 = lim
t→∞ Spop(t; ξ) = e−λ. (5)

Remark 2.2 The proposed model and the PTCR model have the same expression for
the cured fraction.

The SF for the noncured population is given by

S∗(t; ξ) = Pr(T > t |D ≥ 1) =
exp

{
−λ

[
1 − ∑ν

j=1 τ j
(
S(t; θ) j

)]} − e−λ

1 − e−λ
.

The PDF and HR functions related to the susceptible individuals are given by

f ∗(t; ξ) = fpop(t; ξ)

1 − e−λ

and then

h∗(t; ξ) = fpop(t; ξ)

exp
{
−λ

[
1 − ∑ν

j=1 τ j
(
S(t; θ) j

)]} − e−λ

=
⎛

⎝
exp

{
−λ

[
1 − ∑ν

j=1 τ j
(
S(t; θ) j

)]}

exp
{
−λ

[
1 − ∑ν

j=1 τ j
(
S(t; ξ) j

)]} − e−λ

⎞

⎠ hpop(t; ξ)

=
(

1

Pr(T < ∞|T > t)

)

hpop(t; ξ),

i.e., as expected, the hazard function is greater for the susceptible individuals than an
individual selected from the complete population (Chen et al., 1999).

2.2 Special sub-models of the proposedmodel

There are more than 90 submodels in the literature within this class (Wimme and
Altman 1996). We are motivated to introduce these new models because of the wide
usage of Eq. (2) and the fact that the current generalization provides means of its
extension to still more complex situations, with the hope that the new model may
have a “better fit” in certain practical situations (see Sect. 4.2). However, we focused
in some special models, including three that, to date, have not been proposed in the
literature.
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Example 2.1 (Poisson cure rate model). Consider ν = 1 and τ1 = 1 in (1). The
improper SF is given by

Spop(t; ξ) = exp {−λ(1 − S(t; θ))} , t > 0.

This model is known in the literature as the PTCR model and was introduced by
Yakovlev and Tsodikov (1996) and Chen et al. (1999). We use the notation T ∼
PTCR(ξ).

Example 2.2 (Negative binomial cure rate model). Consider ν = ∞ and τi =
− τ i

i log(1−τ)
, i.e., ϒ1, ϒ2, . . . , have logarithmic distribution. The improper SF is given

by

Spop(t; ξ) = exp

{

−λ

[

1 − log (1 − τ S(t; θ))

log(1 − τ)

]}

, t > 0, (6)

This model is named negative binomial cure rate model. We use the notation T ∼
NBCR(ξ). De Castro et al. (2009) introduced an alternative version of this model
parameterized in the cure. The SF for such model is given by

Spop(t; ξ) = [
1 + (exp(λ/τ) − 1) (1 − S(t; θ))

]−τ
, t > 0.

Such parametrization corresponds to take ν = ∞ and τ j = τ [1−e−λ/τ ] j
j . However, in

this parametrization λ is included in the distribution of N and in the distribution of
the ϒ ′

j s. For interpretability, we prefer the parametrization in (6).

Example 2.3 (Hermite cure rate model (new!)). Suppose now ν = 2, τ1 = 1/(1 + τ)

and τ2 = τ/(1+ τ). In other words, ϒ1 − 1, ϒ2 − 1, . . . , have Bernoulli distribution
with success probability τ/(1 + τ). The SF in this case is

Spop(t; ξ) = exp

{

− λ

1 + τ

(
1 − S(t; θ) + τ(1 − S(t; θ)2)

)}

, t > 0.

This model was not yet considered in the literature. We name this new model by
Hermite cure rate model. We denoted as T ∼ HERMCR(ξ).

Example 2.4 (Pólya cure rate model (new!)). Consider ν = ∞ and τi = τ (1− τ)i−1,
i.e., ϒ1, ϒ2, . . . , have geometric distribution. Thus,

Spop(t; ξ) = exp

{

−λ

[
1 − S(t; θ)

1 − (1 − τ)S(t; θ)

]}

, t > 0.

Thismodel is named Pólya cure ratemodel andwas not yet considered in the literature.
For τ = 1, we deduce the PTCR model. We denoted as T ∼ POLCR(ξ).
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Example 2.5 (Thomas cure rate model (new!)). For the choice of ν = ∞ and τi =
τ i−1 exp(−τ)

(i−1)! . In other words, ϒ1, ϒ2, . . . , have a truncated Poisson distribution. In this
case,

Spop(t; ξ) = exp
{
λ
[
S(t; θ) exp[−τ (1 − S(t; θ))] − 1

]}
.

This model is named Thomas cure rate model and was not yet considered in the
literature. We denoted as T ∼ THCR(ξ).

Remark 2.3 The Weibull model is suitable for many biological problems. For this
reason, we consider this model for the time-to-event of the carcinogenic cells with
parametrization

S(t; θ) = exp

{

−
(
t �(1 + 1/σ)

μ

)σ}

,

where θ = (μ, σ ), E(T ) = μ and Var(T ) = μ2
(

�(2/σ+1)
�2(1/σ+1)

− 1
)
. In the gamlss.dist

R package, the function dWEI3 define the density for this parametrization, where μ

is the mean of the distribution (Stasinopoulos and Rigby 2007). Henceforth, we add
the suffix WEI3 to the corresponding cure rate model to refers that we are using this
model to the time-to-event for the concurrent causes. For instance, HERMCR-WEI3,
POLCR-WEI3, etc.

3 Estimation based on a classical approach

In this section, we discuss the inference for the model based on a classical approach.
Identifiability and computational aspects of the proposed model also is discussed.

3.1 Themaximum likelihood estimators for themodel

Note that the cure rate in (5) depends only on λ. In order to facilitate the introduction
of covariates, from this moment we consider the parametrization in terms of p0 =
e−λ. In a cure rate model framework, the individuals are subject to right censoring.
Denote Yi and Ci the failure and censoring times for the i-th individual, respectively,
i = 1, . . . ,m. We observe Ti = min(Yi ,Ci ) and δi = I (Yi ≤ Ci ), where δi = 1
and δi = 0 denote a failure and a censored time, respectively. We also assumed that is
observed for each individual two sets of covariates, say x�

i and z�
i with dimensions r1

and r2 respectively, related to the time-to-event of the carcinogenic cells and the cure
rate, respectively, and satisfying the following functional relations

g1(μi ) = η1i = x�
i β and g2(p0i ) = η2i = z�

i γ . (7)

Furthermore, we assume that the covariate matrices X = (x1, . . . , xm)� and Z =
(z1, . . . , zm)� have ranks r1 and r2, respectively. The link functions g1 : R → R

+ and
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g2 : R → (0, 1) must be strictly monotone, positive and at least twice differentiable,
such that μi = g−1

1 (x�
i β) and p0i = g−1

2 (z�
i ν), with g−1

1 (·) and g−1
2 (·) being the

inverse functions of g1(·) and g2(·), respectively. There are several possible choices
for the link functions g1(·) and g2(·). For instance, two common specifications are
the logarithmic function g1(·) = log(·) and the logit function g2(·) = log (·/(1 − ·)).
Under this setup, the corresponding log-likelihood function for ξ = (β, γ , σ, τ ) under
non-informative censoring is expressed as

�(ξ ; Dobs) =
m∑

i=1

[
δi log fpop(ti ; ξ) + (1 − δi ) log Spop(ti ; ξ)

]
, (8)

where Dobs = (t, δ,X,Z), with t = (t1, . . . , tm) and δ = (δ1, . . . , δm) and fpop and
Spop are presented in (3) and (2), respectively.

The maximum likelihood (ML) estimators ξ̂ = (β̂, γ̂ , σ̂ , τ̂ ) of ξ = (β, γ , σ, τ )

are defined as the values of ξ that maximize the conditional log-likelihood function in
(8). The ML estimators are obtained using numerical methods since equating the first-
order log-likelihood derivatives to zero leads us to a complicated system of nonlinear
equations. A future subsection discusses the computational implementation of the
model.

3.2 Identifiability

Identifiability is an important property of any statistical model in order to guarantee
basic conditions of the desirable estimators. In a cure rate models context, Li et al.
(2001) discussed conditions in order to guarantee that the mixture model and the
PTCR model be identifiable, and Hanin and Huang (2014) revisited such discussion
in a more general framework for the cure rate models. Let ξ = (β1, γ 1, σ1, τ1) the
vector of parameters. Also suppose that two (non-null) set of covariates x = (w′, x′)
and z = (w′, z′) are available and introduced in μ and p0 as μi = g1(x�β i ) and
p0i = g2(z�γ i ), i = 1, 2, where x′ �= z′ and any of the three vectors (x′, z and w′)
can be null. Note thatw′ is a common element for x and z. This notation is very flexible
because allows to denote different combinations for covariates x and z. For instance,
the case where both sets of covariates are equal (x = z) is represented for x′ and z′
being null; the case where both sets of covariates are different (x �= z) is represented
forw′ being null and the case where no covariates for the susceptible part of the model
are avaliable is represented for w′ null and x′ = 1m , a vector of ones of dimension m.
The SF of the model can be written as
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Spop(t; ξ) = p0(γ , z) + (1 − p0(γ , z)) × 1 − p0(γ , z)
−

ν∑

j=1
τ j S(t;θ ,x) j

(
1 − p0(γ , z)−1

)

︸ ︷︷ ︸
S∗(t;θ ,γ ,τ1,τ2,...,x,z)

,

i.e., as a mixture model with cure rate p0(γ , z) and survival function for the time-to-
event in the susceptible individuals S∗(t; θ, γ , τ1, τ2, . . . , x, z). Note that by point 2
in Theorem 1 of Li et al. (2001) the model is not identifiable if p0(γ , z) is constant
(i.e., if z includes only the term related to the intercept). Therefore, the first and basic
condition to make the model identifiable is that z includes at least one covariate. Let

||p0||w′ = sup{p0(γ ,w′, z′) : z′ ∈ Z} and

||F∗||w′ = sup{ lim
t→∞ F∗(t; θ , γ , τ1, τ2, . . . ,w′, x′, z′) : x′ ∈ X }.

As p0(γ , z) = g2(z�γ i ), g2 : R → (0, 1) and is monotone, follows that ||p0||w′ =
1. On the other hand, as 0 ≤ τ1, τ2, . . . , S(t; θ , x) ≤ 1, then it is clear that 0 ≤∑ν

j=1 τ j S(t; θ , x) j ≤ 1, ∀p1, p2, . . ., ∀θ ∈ �, x ∈ X . As we are assuming that
S(·; θ) is a proper function, follows that F∗(t; θ , γ , τ1, τ2, . . . ,w′, x′, z′) ∈ [0, 1]
and then ||F∗||w′ = 1. By point 1 in Theorem 1 of Hanin and Huang (2014), the
model is identifiable.

Remark 3.1 Note that the unique condition to themodel be identifiable is that z includes
at least one covariate. This allows us to make the following statements

(i) The model is identifiable if no covariates are considered to model the mean of
the promotion times (w′ is null and x = 1m).

(ii) The model is identifiable if the same covariates are considered to model the cure
rate and the promotion times (x′ and z′ are null).

Remark 3.2 For the HERMCR-WEI3 model we have that ξ = (λ, τ, μ, σ ), with SF
given by

Spop(t; ξ) = exp

{

− λ

1 + τ

(
1 − exp

{− (yζ )σ
} + τ

(
1 − exp

{−2 (yζ )σ
}))

}

,

where ζ = �(1 + 1/σ)/μ. Note that ξ1 = (λ, 0, μ, σ ) and ξ2 = (λ,∞, 2−1/σ μ, σ )

satisfies that ξ1 �= ξ2 and Spop(t; ξ1) = Spop(t; ξ2),∀t > 0. In other word, this model
is not identifiable. This problem is similar to the obtained in the proportional hazards
model when an intercept is included. For this reason, for thismodel we also necessarily
considered covariates in μ and without intercept term.
The same problem is identified for any distribution where S(t; θ) and [S(t; θ)]2

belongs to the same class of models. For instance, any distribution in the Lehman
type II family of distributions (Gupta et al. 1998) with positive support satisfies this
condition.
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3.3 Computational aspects

The models presented in Sect. 2.2 were implemented in the gamlss framework
(Rigby and Stasinopoulos 2005) to facilitate their use by researchers from other areas.
For instance, for the HERM/WEI3 model with two covariates in the cure rate and the
mean of the concurrent causes can be fitted as
gamlss(Surv(y, delta) ˜ x1+x2, family = cens(HERMWEI3),

nu.formula = ˜x1+x2)

The model also was implemented maximizing directly the log-likelihood function
in (8) using the nlminb function. The estimated Hessian matrix, say �̂(ξ), was
estimated based on a numerical approximation given by the pracma package. Since
ξ̂ is a maximum likelihood estimator of ξ , under suitable regularity conditions, it can
be shown that (see Kalbfleisch and Prentice 2002, page 60)

√
m
[
�̂(ξ)

]−1/2 (
ξ̂ − ξ

) D→ Nr1+r2+2(0r1+r2+2, Ir1+r2+2), as m → ∞,

where 0r and Ir denote a vector of zeros of dimension r and the identity matrix of
order r , respectively.

4 Numerical examples

In this section, we present a Monte Carlo simulation study and the real data problem
related to melanoma cancer in the state of São Paulo discussed in the introduction
section.

4.1 A simulation study

We present a simulation study in order to assess the properties of the ML estimators in
finite samples for our proposal. We considered the HERMCR-WEI3, POLCR-WEI3
and THCR-WEI3 models. We considered two covariates (say z1 and z2) related to
the cure rate and two covariates (x1 and x2) related to the promotion times of the
cells. z1 and x1 were drawn independently from the uniform model between 0 and
2 and z2 and x2 were drawn independently from the Bernoulli distribution with suc-
cess probabilities 0.4 and 0.7, respectively. In all the cases, the true parameters were
fixed as β0 = 1.0, β1 = −0.8, β2 = −0.5, γ0 = 1.5, γ1 = −0.6, γ2 = −0.7 and
log(σ ) = 1.1. For the HERMCR-WEI3 and THCR-WEI3 models, we also consid-
ered log(τ ) = log(0.35) ≈ −1.05 and for the POLCR-WEI3 model we considered
logit(τ ) ≈ −0.62, were logit(x) = log(x/(1 − x)). Such covariates were introduced
as

log(μi ) = η1i = β0 + β1z1i + β2z2i and

logit(p0i ) = η2i = γ0 + γ1x1i + γ2x2i , i = 1 . . . ,m.

To avoid the identifiability problems of the HERMCR-WEI3 model, we don’t
consider the intercept term in the promotion times (i.e., β0 = 0 in this case). We

123



Y. M. Gómez et al.

considered four sample sizes: 200, 300, 500 and 1000. For each combination of
model and sample size, we drawn the covariates and then they were fixed through
the 1000 replicates that we considered. To draw values from the model and for
i = 1, . . . ,m, we simulate Ni ∼Po(θi ). If Ni > 0, we draw X1, . . . , XNi from the
respective model (Bernoulli, geometric or truncated Poisson for HERMCR-WEI3,
POLCR-WEI3 and THCR-WEI3, respectively) and define Di = X1 + . . . + XNi .
Therefore, we draw V1, . . . , VDi from the WEI3 model in Remark 2.3. Finally, the
failure times are defined as T ∗

i = min(V1, . . . , VDi ), for Ni > 0 and T ∗
i = ∞,

for Ni = 0. To incorporate a censoring scheme, we consider Ci = 20, i.e., a type
I censoring scheme. Finally, the observed times are defined as Ti = min(T ∗

i ,Ci )

and the failure indicators are δi = I (T ∗
i ≤ Ci ). For each sample, we apply the ML

estimation in R (R Core Team 2020) considering: i) the gamlss framework (say
ξ̂1); and ii) the direct maximization of the log-likelihood function with the nlminb
function (say ξ̂2). The estimated vector of parameters was considered as ξ̂ , where
�(̂ξ ; Dobs) = max(�(̂ξ1; Dobs), �(̂ξ2; Dobs)), i.e., the point where the log-likelihood
function in (8) attaches the maximum between the two estimated points. We also com-
puted the estimated standard error based on the Hessian matrix. For each parameter,
the results are summarized with the mean of the estimated bias, the root of the esti-
mated mean squared errors (RMSE), the mean of the estimated standard errors (SE)
and the coverage probabilities (CP) of the asymptotic 95% confidence intervals. In all
the cases, the average of the percentage of censored observations was around 65%.

Table 1 presents the biases, RMSE andCP of the estimators of the parameters (using
the maximum likelihood estimation) for the Hermite, Pólya and Thomas models. As
expected, increasing the sample size reduces substantially the RMSE in all cases con-
sidered. We also observe that the MLEs of β0, β1, β2, γ0, γ1, γ2 and log(σ )work well
for all cases considered. On the other hand, we call attention for the MLE of logit(τ ).
The logit(τ ) parameter presented higher bias and RMSE. Therefore, a larger sample
size is necessary to obtain satisfactory results with respect to the estimation of logit(τ )

for the HERMCR-WEI3, POLCR-WEI3 and THCR-WEI3models. Furthermore, note
that the asymptotic confidence intervals have an empirical coverage probability that
is less than the nominal value 0.95, but the coverage probability for logit(τ ) is higher
than the nominal level for small sample size. Overall, we observe that the asymptotic
confidence intervals have a good performance.

4.2 Melanoma cancer data

Themelanomadataset comprises 6749 records of patients diagnosedwithmelanoma in
the state of São Paulo, Brazil, between 2000 and 2014, with follow-up conducted until
2018. All records were provided by the São Paulo Oncocenter Foundation (FOSP),
and it can be downloaded in http://www.fosp.saude.sp.gov.br. The hospital cancer
registry (RHC/FOSP) started its activities in 2000, intending to register cancer cases
treated in the state. Currently, 77 hospital cancer registries are active, and every three
months, the records send the datasets. The FOSP is a public institution connected to
the State Health Secretariat, which assists in preparing and implementing healthcare
policies in Oncology. As mentioned by Andrade et al. (2012), these policies serve
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as an instrument for oncology hospitals to prepare their protocols and improve care
practices.

In the routine clinical the staging systemproposed by theAmerican JointCommittee
on Cancer (AJCC) is used to define stage melanoma cases. Asmentioned by Calsavara
et al. (2020), the early clinical stages (I or II) are associated with a better prognosis.
The great majority of patients with stage I or II melanoma will be alive after 10 years
of follow-up, once that most of these cases are treated with surgery. A worst prognosis
is expected in patients diagnosed in the clinical stage III or IV, and the specific survival
rates at 10 years after diagnosis may vary from 24 to 88% (Gershenwald et al. 2017).
Here, we analyzed the effect of all covariates such as age at diagnosis (in years), sex,
surgery, clinical stage, radiotherapy, and chemotherapy.

In our study, the event of interest was defined as death due to cancer. The main
goals were to identify the effects of the observed covariates, including sex, age at
diagnosis, clinical stage, surgery, radiotherapy and chemotherapy, on the mean of the
time-to-event, as well as in the long-term survivors.

We fitted the discussedmodels in Sect. 2.2 to this data set considering the covariates
surgery,clinical stage,age,sex,radiotherapy andchemotherapy
in the cure rate (with the logit link) and the mean of the carcinogenic cells (with
the log link). The results of AIC and BIC criteria for each fitted model are shown in
Table 2. According to the AIC and BIC criteria, the POLCR-WEI3 model seems to
be better choice among the fitted models and it will be our working model, thus we
will focus exclusively on the interpretation of POLCR-WEI3 model parameters.

Table 3 shows the estimated parameters for the selectedmodel. According to results,
among the observed covariates considered in the model, there is evidence that all
variables, except surgery, are important factors to explain the long-term survivors
(component γ ). As expected, as clinical stage increases the cure rate decreases. Age
at diagnosis is associated with the cure rate, as age increases the cure rate decreases.
Lower cure rates are expected for patients who received radiotherapy and chemother-
apy. Regarding to the effect of covariates in the mean of the concurrent causes
(component β) the surgery, clinical stage, radiotherapy, and chemotherapy were sta-
tistically significant. According to results, higher mean of the concurrent causes are
expected to surgery, radiotherapy, and chemotherapy covariates (β̂ > 0), while lower
mean is expected for clinical stage advanced. Note that the best prognosis is given for
patients in stage I, receiving surgery, female and without radiotherapy and chemother-
apy, while the worst prognosis is given for patients in stage IV, without surgery, male
with radiotherapy and chemotherapy. Based on such profiles (assuming a reasonable
age limit of 100 years), the cure rate vary from 0.004 to 0.960. Then, using the relation
λ = − log p0, we obtain that, for this particular problem, the mean of the number of

Table 2 AIC and BIC criteria for the fitted models in melanoma data set

Model PTCR-WEI3 HERMCR-WEI3 NBCR-WEI3 POLCR-WEI3 THCR-WEI3

AIC 10931.1 10914.6 10886.2 10866.1 10899.6

BIC 11060.6 11050.9 11022.5 11002.4 11035.9

Bold values indicate the lowest AIC and BIC values
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Table 3 Maximum likelihood estimate, standard error (SE), z-value and p value for POLCR-WEI3 consid-
ering sex, age, clinical stage, surgery, radiotherapy and chemotherapy for the melanoma cancer dataset

Component Covariate Estimate SE z-value p value

β Intercept 2.9588 0.6033 4.9042 < 0.0001

surgery 0.6083 0.0861 7.0623 < 0.0001

stage II − 0.0396 0.1524 − 0.2595 0.7952

stage III − 0.5988 0.1392 − 4.3010 < 0.0001

stage IV − 1.4024 0.1419 − 9.8851 < 0.0001

age 0.0025 0.0022 1.1341 0.2568

sex: Female 0.0761 0.0702 1.0835 0.2786

radiotherapy 0.3394 0.0990 3.4300 0.0006

chemotherapy 0.6646 0.0847 7.8473 < 0.0001

γ Intercept 2.4104 0.2743 8.7863 < 0.0001

surgery 0.2925 0.1620 1.8061 0.0709

stage II − 1.3986 0.1697 − 8.2414 < 0.0001

stage III − 1.9403 0.1577 − 12.3019 < 0.0001

stage IV − 2.9037 0.1922 − 15.1072 < 0.0001

age − 0.0203 0.0034 − 5.9013 < 0.0001

sex: Female 0.4654 0.1087 4.2811 < 0.0001

radiotherapy − 1.4406 0.2646 − 5.4446 < 0.0001

chemotherapy − 1.4948 0.1888 − 7.9169 < 0.0001

log(σ ) – 0.3879 0.0260 14.9375 < 0.0001

logit(τ ) – − 2.9470 0.8840 − 3.3337 0.0009

clusters range from 0.041 to 5.463. Therefore, considering the 99.9% percentile of
the Poisson distribution, we conclude that for the better prognosis at most there is a
cluster of cells and for the worse prognosis at most there is 12 clusters of cells. On
the other hand, by the biological motivation for the POLCR-WEI3 model given in
Sect. 2, it is deduced that the distribution for the number of carcinogenic cells in each
cluster follows a geometric distribution with parameter τ̂ = 0.05. This implies that
the estimated mean and standard deviation for the carcinogenic cells in each cluster
are 20.05 and 19.54, respectively.

In order to justify the inclusion of covariates in the mean of the concurrent causes,
we considered that β is partitioned as β� = (βIntercept,β

��), i.e., β� is the vector
of parameters related to the covariates in this part of the model. Therefore, we perform
the test H0 : β� = 08 versus H1 : β� �= 08. The statistic for the likelihood ratio test
is given by LR = 2(−5413.04 − (−5568.32)) = 310.57 with an associated p value
< 0.0001 (based on the chi-squared distribution with 7 freedom degrees). Then, the
inclusion of covariates in the mean of the cells is widely supported. Figure 3 shows
the qq-plot for the randomized quantile residuals (RQRs) (Dunn and Smyth 1996)
for the selected model. If the model were correctly specified for the data, the RQRs
represent a random sample from the standard normal model, which is supported by
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Fig. 3 Randomized quantile
residuals for the POLCR-WEI3
model in melanoma data set
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Fig. 4 Estimated survival function (left) and hazard function (right) obtained for the POLCR-WEI3
model for different profiles: (1) with surgery, clinical stage I, 20 years old, female, with radiotherapy
and chemotherapy (solid curve); (2) with surgery, clinical stage II, 40 years old, male, with chemotherapy
but not radiotherapy (dashed curve) and; (3) without surgery, clinical stage III, 60 years old, male, without
radiotherapy or radiotherapy (dotted curve)

the Kolmogorov–Smirnov (KS), Anderson–Darling (AD) and the Cramér–Von-Mises
(CVM) test. Therefore, we conclude that the model is appropriate for this data set.

Figure 4 shows the estimated survival function andhazard function for three selected
profiles. As expected, younger female patients with early-stage cancer (clinical stage
I), who had undergone surgery and who received radiotherapy and chemotherapy
have higher survival; whereas 60 years-old male patients, diagnosed in clinical stage
III, without surgery, who did not receive radiotherapy or chemotherapy had a worse
survival function.
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5 Concluding remarks

There have been significant recent works-both practical and theoretical-focusing on
the use of the promotion cure rate model studied in Yakovlev and Tsodikov (1996) and
Chen et al. (1999).Motivated froma newbiological interpretation of cancermetastasis,
in this paper, we introduced a general method for obtaining more flexible cure rate
models and extended the promotion cure rate model. We have assumed a compound
Poisson distribution for the number of cells, a Poisson distribution for the number
of clusters of cells for an individual left active after the initial treatment, and some
discrete distribution (truncated at zero) for the number of cells in j th cluster. Some
mathematical properties of the new cure rate model was studied. Maximum likelihood
inference is implemented straightforwardly for estimating the model parameters. We
then conducted a simulation study to establish their empirical properties in order
to evaluate their performances. In the empirical application, the proposed cure rate
models show the potential of using the new methodology. In conclusion, we define a
general approach for generating new cure rate models, at least 90 models (Wimme and
Altman 1996), some of them known and the great majority new ones. The practical
relevance and applicability of the proposed models were demonstrated using a real
dataset of patients diagnosed with melanoma. As expected, the observed covariates:
age at diagnosis, sex, clinical stage, radiotherapy, and chemotherapy covariates were
important factors to explain the long-term survivors, whereas the covariates surgery,
clinical stage, radiotherapy, and chemotherapy were statistically significant to explain
the mean of the concurrent causes. Further, we motivate the use of the new cure rate
model from a new biological interpretation of cancer metastasis. We think these two
facts combined may attract more complex applications in the literature of survival
analysis. Future work should explore other estimation methods for the proposed cure
rate model, for instance, the Bayesian approach similarly as developed by Chen et al.
(1999).
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