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Verifying compliance with ballast water standards:

a decision-theoretic approach

Eliardo G. Costa1, Carlos Daniel Paulino2 and Julio M. Singer3

Abstract

We construct credible intervals to estimate the mean organism (zooplankton and phytoplankton)

concentration in ballast water via a decision-theoretic approach. To obtain the required optimal

sample size, we use a total cost minimization criterion defined as the sum of the sampling cost

and the Bayes risk either under a Poisson or a negative binomial model for organism counts,

both with a gamma prior distribution. Such credible intervals may be employed to verify whether

the ballast water discharged from a ship is in compliance with international standards. We also

conduct a simulation study to evaluate the credible interval lengths associated with the proposed

optimal sample sizes.

MSC: 62F15, 62P12.
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1 Introduction

With the expansion of maritime traffic, ballast water has become the leading dispers-

ing agent of invasive organisms with serious environmental, public health and economic

consequences as indicated in Strayer (2010), McCarthy et al. (1992) and Marbuah, Gren

and McKie (2014). In order to reduce the introduction of invasive species, specially zoo-

plankton and phytoplankton, the international maritime community adopted the Ballast

Water Management Convention (BWM Convention) in 2004, that has finally entered

into force in 2017. Among other restrictions, the D-2 standard requires that deballasted

water should contain no more than 10 viable organisms (referred to simply as organisms

in the remainder) with maximum dimension between 10 µm and 50 µm per mL (IMO,

2004).

Given the large amount of ballast water carried by some vessels, it is impractical to

analyze the whole water volume and an alternative is to rely on sampling methods that
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guarantee some acceptable error rates associated to the decision of whether a given de-

ballasting process complies with the D-2 standard. Many authors (First et al., 2013;

Carney et al., 2013; Gollasch and David, 2017; Casas-Monroy, Rajakaruna and Bai-

ley, 2020) have addressed this issue, mentioning the quest for “representative” samples,

without a consensus on a clear definition and examining samples obtained from a limited

number of ship trips.

Very few articles deal with a more structured approach, in which a required sam-

ple size is computed to meet some maximum acceptable sampling error (Basurko and

Mesbahi, 2011; Miller et al., 2011; Frazier et al., 2013). Costa, Lopes and Singer (2015,

2016), on the other hand, define “representative samples” as those that can be used to es-

timate the organism concentration in the ballast water tank with a pre-specified precision

and use a frequentist approach to compute the optimal sample size with this characteris-

tic. Costa, Paulino and Singer (2021) adopted a Bayesian approach to compute sample

sizes required for estimating organism concentration obtained via two optimality crite-

ria: the average coverage and the average length of credible intervals.

As many different tools or methods (e.g., Niskin or Van Dorn bottles, plankton nets,

pumps, or the in-line method) may be employed to collect samples from ballast water

(Casas-Monroy et al., 2020), it seems reasonable to include costs in the optimal sample

size determination. With this in mind, we propose a Bayesian decision approach based

on a criterion which minimizes the sum of the sampling method cost and the Bayes risk.

An advantage of this approach is that the cost of collecting the sample is explicitly taken

into account.

The proposed approach depends on an ad hoc loss function defined to accommodate

the implications of using a credible interval for the organism concentration λ to decide

for compliance or not with the D-2 standard. In a different setup, Etzioni and Kadane

(1993) use a similar criterion with quadratic and logarithmic loss functions under a

normal model. Sahu and Smith (2006) consider a loss function for the hypothesis testing

problem of the parameter of a normal model. Islam (2011) and Islam and Pettit (2012,

2014) consider quadratic, linex and bounded linex loss functions for point estimation

of the mean and the variance of a normal model with normal prior distributions, and

also exponential and Poisson models both with a gamma prior distribution for point

estimation of their respective parameters. Following a similar or the same approach, we

may cite Pham-Gia and Turkkan (1992), Bernardo (1997), Lindley (1997), Parmigiani

and Inoue (2009), De Santis and Gubbiotti (2017), among others.

Consider a sample xxxn =(x1, . . . ,xn) consisting of the counts of organisms in n aliquots

(sub-samples) with a given volume w collected from a ballast water tank and a specified

loss function L. The objective is to obtain the optimal sample size no that minimizes a

total cost function consisting of the sum of a risk function r and a sampling cost C(n).

Once the required optimal sample size has been determined, the corresponding aliquots

with volume w are collected (possibly on board or during the deballasting process), the

organisms in these aliquots are counted and a credible interval with lower a(xxxno) and

upper b(xxxno) limits for the mean organism concentration λ is computed. Considering
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that the D-2 standard requires λ< 10 for compliance, the ship is declared not compliant

if a(xxxno) ≥ 10 or compliant, if b(xxxno) < 10. Otherwise, if a(xxxno) < 10 < b(xxxno), more

data are needed to make a decision.

In Section 2, we describe two Bayesian models required to compute the credible in-

tervals. The first is appropriate for situations where the organisms are homogeneously

distributed in the ballast water tank and the second may be needed for heterogeneous dis-

tributions. Sample size determination is presented in Section 3 in terms of a convenient

loss function in a decision-theoretic approach. Additionally, we conduct a simulation

study to evaluate the lengths of the credible intervals obtained for different combinations

of the parameters governing the models and different sampling costs. We conclude, in

Section 4, with a discussion of the results and of the difficulties associated to the estab-

lishment of the cost components.

2 Bayesian models

2.1 Poisson model with a gamma prior distribution

Let X be the number of organisms in an aliquot of volume w collected from a ballast

tank with mean organism concentration λ. The expected number of organisms in this

aliquot is wλ, i.e., E [X |λ] = wλ. Suppose that, given λ, X follows a Poisson distribution

with mean wλ; this essentially corresponds to the assumption that the organisms are

homogeneously distributed in the ballast tank. A possible and first natural choice for a

prior distribution is the conjugate gamma distribution for which the density function is

h(λ) ∝ λθ0−1 exp(−θ0λ/λ0),

where λ0 and θ0 are positive and known fixed constants, respectively interpreted as the

prior mean and as a quantity inversely proportional to the prior variance. Thus, the larger

(smaller) is θ0, the smaller (larger) is the prior uncertainty about λ.

Considering a random sample of size n of X |λ and a gamma prior distribution for λ,

we may write the model hierarchically as follows

Xi|λ iid∼ Poisson(wλ), i = 1,2, . . . ,n; (1)

λ∼ Gamma(θ0,θ0/λ0). (2)

In this context, the posterior distribution of λ is also a gamma distribution with parame-

ters θ0+sn and nw+θ0/λ0, where sn =∑n
i=1 xi, i.e., λ|xxxn ∼Gamma(θ0+sn,nw+θ0/λ0).

Details are presented in the Supplementary Material.
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2.2 Negative binomial model with a gamma prior distribution

Suppose that the organism concentration in the i-th aliquot is ℓi and the corresponding

number of organisms is Xi, i = 1,2, . . . ,n. The expected number of organisms in the

i-th aliquot is E [Xi|ℓi] = wℓi. For i = 1,2, . . . ,n, suppose that, given ℓi, Xi follows a

Poisson distribution with mean wℓi and that given a mean concentration λ in the tank,

ℓi ∼ Gamma(φ,φ/λ), so that E [ℓi|λ|] = λ and Var [ℓi|λ] = λ2/φ. Thus, given λ and φ, Xi

follows a negative binomial distribution with E [Xi|λ,φ] = wλ and Var [Xi|λ,φ] = wλ+

(wλ)2/φ, where φ is a shape (or agglomeration) parameter assumed known (see Amaral

Turkman, Paulino and Müller, 2019, Appendix A on the Poisson-gamma mixture). We

use the notation Xi|λ,φ∼NB(wλ,φ) and again assume a gamma prior distribution for λ.

Considering a random sample of size n from X |(λ,φ) and a gamma prior distribution

for λ, we may write the model hierarchically as

Xi|λ,φ iid∼ NB(wλ,φ), i = 1,2, . . . ,n; (3)

λ∼ Gamma(θ0,θ0/λ0). (4)

In this context, the posterior distribution of λ is not a known distribution and the comput-

ing of its summaries is analytically intractable. Thus, we rely on Markov chain Monte

Carlo (MCMC) methods to generate random samples from the distribution of interest. In

our case, we use the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings,

1970) based on a random walk to generate random samples from the posterior distribu-

tion of λ. With these samples we may compute related inference summaries. Details are

presented in the Supplementary Material.

3 Sample size determination

An approach to the problem of sample size determination and credible interval estima-

tion is to consider it as a decision problem (Lindley, 1997; Parmigiani and Inoue, 2009;

Islam and Pettit, 2014). For this purpose, given that λ is the parameter of interest, it is

necessary to specify a loss function L(λ,dn) based on a sample XXXn = (X1,X2, . . . ,Xn)

and a decision function dn ≡ dn(XXXn). For a given n, the action dn(xxxn) consists of the

specification of two quantities, the lower [say, a(xxxn)] and the upper [say, b(xxxn)] limits of

a credible interval for λ.

Letting f (xxxn|λ) be the sampling distribution for XXXn and h be a prior distribution for

the unknown parameter λ, the Bayes risk is (see Parmigiani and Inoue, 2009)

r(h,dn) :=
∫

Λ

∫

Xn
L(λ,dn) f (xxxn|λ)h(λ)dxxxndλ, (5)

where Λ is the parameter space and X
n is the sample space. The Bayes risk r(h,dn)

may be viewed as the mean of the sampling expected loss expressed as a function of
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the parameter of interest weighted by the prior distribution; this summarizes the sam-

pling expected loss over all possible values of the parameter of interest (here, the mean

concentration λ).

The decision d∗
n that minimizes r(h,dn) among all possible decisions dn is called a

Bayes rule. Note that if the order of the integration may be inverted, we have

r(h,dn) =
∫

Xn

[∫

Λ
L(λ,dn)h(λ|xxxn)dλ

]
f (xxxn)dxxxn

=
∫

Xn
E
[
L(λ,dn)

∣∣xxxn

]
f (xxxn)dxxxn, (6)

where f (xxxn) is the marginal distribution of the data, so that the decision d∗
n that mini-

mizes r(h,dn) is the same that minimizes the posterior expected value of the loss func-

tion, namely E
[
L(λ,dn)

∣∣xnxnxn

]
, for each xnxnxn. Given the specified action (the determination

of the lower and upper limits of a credible interval for λ in our case), one must define

a criterion to obtain an optimal sample size taking both the Bayes risk and the sam-

pling cost into account. With this purpose, we minimize the total cost function TC(n),

customarily expressed by

TC(n) = r(h,d∗
n)+C(n),

where the function C(n) needs to be specified. Here, we take C(n) = cn, with c being

the cost of sampling an aliquot.

The additive structure of TC(n) in terms of the cost of an action regarding the mag-

nitude of λ and of the sample collection cost presupposes that they are measurable or

scalable in some common unit (see Raiffa and Schlaifer, 1961, for example). In fact, we

can view C(n) as the relative cost of sampling expressed in terms of the cost associated

to the Bayes risk.

Often it is not possible to compute r(h,d∗
n) analytically. In such cases, we may use

Monte Carlo simulations as an alternative. Since simulation methods are used, the es-

timates of TC(n), denoted by tc(n), may show a variation around its true value. We

may reduce this variation by: (i) taking the number of Monte Carlo replicates as large

as possible and/or, (ii) fitting a curve by least squares or some other method to a set of

points (n, tc(n)). Müller and Parmigiani (1995) propose to fit the following curve to the

estimates of TC(n),

tc(n) =
E

(1+Hn)G
+ cn,

where E , H and G are parameters to be estimated. The numerical methods required

to estimate these parameters sometimes do not reach convergence depending on the

initial values adopted to implement the corresponding algorithms. In order to simplify

the fitting procedure and observing that the parameters H and G play similar roles and

essentially represent the decreasing rate of the Bayes risk, we propose to fit the function
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tc(n) =
E

(1+n)G
+ cn,

that may be linearized as

log[tc(n)− cn] = logE −G log(1+n), (7)

where the term − log(1+n)may be interpreted as an explanatory variable and log[tc(n)−
cn], as a dependent variable in a linear regression model. Assuming that an error is

added, the estimates of E and G may be computed by least squares. Then, the optimal

sample size no is the largest integer closest to

(
ÊĜ

c

)1/(Ĝ+1)

−1, (8)

where Ê and Ĝ are, respectively, the least squares estimates of E and G.

We adopt the loss function

L(λ,dn) = γτ +(λ−m)2/τ ,

where γ > 0 is a fixed constant, τ = (b− a)/2 is the half-length and m = (a+ b)/2

is the center of the credible interval (see Rice, Lumley and Szpiro, 2008). The first

term involves the half-width of the interval which we may interpret as its precision. The

second term, namely, the square of the distance between the parameter of interest (λ) and

the center of the interval divided by the half-width to maintain the same measurement

unit of the first term, may be interpreted as the bias divided by the precision. If the

precision increases (τ decreases) the second term of the loss function increases. The

weights attributed to each term are γ and 1, respectively. If γ < 1, we attribute the

largest weight to the second term, prioritizing lower bias over precision; if γ > 1, the

situation is reversed and if γ = 1, the two terms have the same weight.

For this loss function, the Bayes rule corresponds to the quantities which define

the interval [a∗(xxxn),b
∗(xxxn)] = [m∗ −SVγ ,m

∗+SVγ ], where m∗ = E
[
λ
∣∣xxxn

]
and SVγ =

γ−1/2(Var
[
λ
∣∣xxxn

]
)1/2. For more details see Parmigiani and Inoue (2009), Rice et al.

(2008) or Schervish (1995).

In a practical situation, once the required optimal sample size no has been determined

along with the corresponding organism counts xxxno , the credible interval limits a∗(xxxno)

and b∗(xxxno) are obtained via E
[
λ
∣∣xxxno

]
and Var

[
λ
∣∣xxxno

]
, expressed in terms of the models

described in the preceding section.

An algorithm to obtain the optimal sample size satisfying the total cost minimization

criterion for the adopted loss function is outlined in the Supplementary Material and the

corresponding R code is available in Costa, Paulino and Singer (2020). In Tables 1-2 we

present optimal sample sizes computed for different values of the parameters defining

the prior distributions for both models considered in Section 2. We set λ0 and obtain the
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Figure 1: Estimated total cost as a function of n for the negative binomial/gamma model with γ = 1/2,

φ = 22, w = 1, c = 0.01, λ0 = 10 and prior variance equal to 4; the vertical line indicates the optimal

sample size no = 36.

value of θ0 such that the prior variance is a constant, say, σ2, i.e., θ0 = (λ0/σ)
2. See

Figure S2 in the Supplementary Material. The values considered for φ were chosen to

cover the range of estimates obtained from real data reported in Casas-Monroy et al.

(2020). In Figure 1 we depict a curve fitted to the estimated total cost as a function of n

for the negative binomial/gamma model with γ = 1/2, φ= 22, w = 1, c = 0.01, λ0 = 10

and prior variance equal to 4. The vertical line indicates the optimal sample size no = 36.

We also carried out a simulation study to evaluate the lengths of the credible intervals

and the respective Bayesian coverage probability computed from samples obtained with

the proposed optimal sample sizes. For such purposes, we considered the optimal sam-

ple sizes obtained via either the Poisson/gamma or the negative binomial/gamma model

for combinations of different values of c, θ0 (and φ in the negative binomial/gamma

model). For each scenario, we drew 1000 samples xxxno with the optimal sample size no,

obtained the limits a∗(xxxno) and b∗(xxxno) of the corresponding credible intervals, computed

the mean of their lengths and the mean of the Bayesian coverage probabilities (see Sup-

plementary Material for more details). The results for the average lengths are displayed

(within parentheses) in Tables 1-2. The average acceptance rates for the Metropolis-

Hastings algorithm used in the negative binomial/gamma model ranged between 31%

and 71%. The results for the Bayesian coverage probability are discussed in Section 4.
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Table 1: Optimal sample sizes no and estimated mean posterior credible interval lengths (within parenthe-

ses) under the Poisson/gamma model (1)-(2) with w = 1 and λ0 = 10.

γ
Aliquot Prior variance

cost (c) 1 2 4

1/2
0.001 145 (0.72) 157 (0.70) 164 (0.69)

0.010 28 (1.45) 32 (1.50) 34 (1.48)

1
0.001 184 (0.45) 198 (0.44) 207 (0.44)

0.010 35 (0.94) 40 (0.94) 43 (0.94)

2
0.001 237 (0.28) 252 (0.28) 263 (0.27)

0.010 46 (0.60) 51 (0.60) 55 (0.59)

A simple algorithm with the steps required for the determination of no and for the

decision with respect to D-2 standard follows.

Step 1. Set the values of λ0 and θ0 (prior distribution), φ (only for negative binomial

model), w (aliquot volume), c (aliquot cost) and γ (loss function).

Step 2. Obtain the corresponding optimal sample size no using the algorithm provided

in the Supplementary Material with the parameter values defined in Step 1.

Step 3. Sample no aliquots of water from the ballast tank of the ship and count the

number of organisms in each aliquot. We denote these no organism counts as

xxxno = (x1, . . . ,xno).

Step 4. With the organism counts xxxno and γ compute the credible interval limits a∗(xxxno)
and b∗(xxxno) via E

[
λ
∣∣xxxno

]
and Var

[
λ
∣∣xxxno

]
. If there is no closed form for these

moments of the posterior distribution, compute estimates for these quantities

simulating values from the posterior distribution (using MCMC or another si-

mulation-based method) and taking the respective sample moments.

Step 5. Use the credible interval limits to decide for compliance with the D-2 standard

as follows: declare compliance if b∗(xxxno)< 10, or non-compliance if a∗(xxxno)≥
10. Otherwise, if a∗(xxxno) < 10 < b∗(xxxno), more data are required to make a

decision.

4 Discussion

We propose a decision-theoretic approach to obtain an optimal number of aliquots re-

quired to estimate the organism concentration in ballast water and indicate how the

results may be employed to verify compliance with the D-2 standard.

The results in Table 1 obtained under the Poisson/gamma model indicate that the op-

timal sample size no increases as the prior uncertainty (variance) about λ increases, but

the average interval length remains the same. For the negative binomial/gamma model

we observe a similar behavior (see Table 2).
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Table 2: Optimal sample sizes no and estimated mean posterior credible interval lengths (within parenthe-

ses) under the negative binomial/gamma model (3)-(4) with w = 1 and λ0 = 10.

γ
Aliquot

φ
Prior variance

cost (c) 1 2 4

1/2
0.001

1 276 (1.51) 345 (1.48) 347 (1.52)

4 220 (1.05) 246 (1.03) 259 (1.03)

8 162 (0.99) 185 (0.96) 206 (0.91)

13 162 (0.89) 180 (0.87) 192 (0.85)

22 156 (0.83) 172 (0.80) 182 (0.79)

0.010
1 - 29 (3.25) 60 (3.18)

4 21 (2.23) 37 (2.26) 42 (2.35)

8 26 (1.93) 32 (2.05) 40 (1.99)

13 25 (1.82) 33 (1.84) 38 (1.82)

22 23 (1.75) 31 (1.74) 36 (1.71)

1
0.001

1 365 (0.96) 436 (0.95) 458 (0.96)

4 232 (0.73) 267 (0.70) 292 (0.68)

8 217 (0.61) 243 (0.59) 260 (0.58)

13 208 (0.56) 229 (0.55) 244 (0.53)

22 200 (0.52) 219 (0.51) 231 (0.50)

0.010
1 - 48 (2.07) 78 (2.04)

4 34 (1.42) 47 (1.47) 56 (1.47)

8 36 (1.24) 45 (1.26) 51 (1.26)

13 35 (1.16) 43 (1.17) 49 (1.15)

22 35 (1.08) 42 (1.09) 47 (1.07)

2
0.001

1 478 (0.61) 510 (0.63) 678 (0.56)

4 301 (0.46) 344 (0.44) 373 (0.43)

8 281 (0.39) 310 (0.37) 331 (0.36)

13 268 (0.35) 293 (0.34) 309 (0.34)

22 257 (0.33) 279 (0.32) 292 (0.31)

0.010
1 - 75 (1.31) 109 (1.27)

4 61 (0.85) 70 (0.89) 70 (0.95)

8 51 (0.78) 56 (0.82) 65 (0.80)

13 51 (0.72) 54 (0.75) 62 (0.73)

22 49 (0.68) 53 (0.70) 59 (0.68)

For both models and for all no in Tables 1-2 the average Bayesian coverage pro-

babilities obtained in the simulation study were approximately 0.84, 0.68 and 0.52 for

γ = 1/2,1 and 2, respectively. These values are similar to the probabilities that a stan-

dard normal variable lies in the intervals (−
√

2,
√

2), (−1,1) and (−1/
√

2,1/
√

2), re-

spectively, and are consistent with the asymptotic normality of the corresponding poste-

rior distributions. See Ferguson (1996, pg. 140), for example. However, we observe that

this approximation also occurs for no ≈ 30. To explain this, first, note that as θ0 → ∞
the gamma distribution approaches a normal distribution (McCullagh and Nelder, 1989,

pg. 287). For the Poisson/gamma model (1)-(2) the respective posterior distribution is

also gamma with shape parameter θ0 + sn, and the cases for which no ≈ 30 are those
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where the prior variance is equal to 1 or 2 and correspond to θ0 equal to 100 or 50,

respectively. We may consider these values of θ0 large enough to guarantee a reasonable

approximation by the normal distribution.

The posterior distribution for the negative binomial/gamma model (3)-(4) is neither a

gamma distribution nor a known distribution. To verify whether the normal approxima-

tion also holds in this case, we considered the smallest sample size in Table 2, namely

no = 21 and generated 100 samples of size 100 from the posterior distribution of λ.

We applied the Shapiro-Wilk test to each of these samples and observed that 90 out of

100 p-values were greater than 0.05, i.e., that the normal approximation seems reason-

able even for the smallest no in Table 2. This suggests, for example, that in order to

obtain a Bayesian coverage probability of 0.95, we must have γ = 1/1.962. In general,

if we want a Bayesian coverage probability approximately equal to 1−ρ, we must set

γ = 1/[Φ−1(1−ρ/2)]2, where Φ−1(·) is the inverse probability function of the standard

normal distribution. In other words, larger coverage probabilities requires smaller values

for γ, which places more emphasis on the center than on the length of the corresponding

credible interval.

We also observe that when the cost of sampling an aliquot c increases, the optimal

sample size (and consequently, the average interval length) decreases (increases) under

either model, but at the expense of an increase in the total cost (Tables 1-2). For example,

if we set the prior variance equal to 4, γ = 1/2 and φ= 1, from the results in Table 2, it

follows that the optimal sample size for c = 0.001 is 347, generating a sampling cost of

C(347)= 0.001×347= 0.347; the optimal sample size for c= 0.010, on the other hand,

is 60, generating a sampling cost C(60) = 0.010×60 = 0.60, an increase of ≈ 73%.

Although the aggregation parameter φ represents an important feature related to the

heterogeneity of the organism distribution in the ballast water tank, under the total cost

minimization approach, the optimal sample size is only slightly affected when φ in-

creases (with the other parameters fixed) for c = 0.01. As displayed in Table 2, for φ≥ 4

the optimal sample sizes are almost the same for different values of the prior variance.

Also, note that for c = 0.01, φ = 1 and prior variance equal to 1 we have no entry in

Table 2 because there is no associated optimal sample size. This means that the cost of

sampling outweighs the cost of decreasing the Bayes risk and it is not worth obtaining

aliquots. This was also observed by Etzioni and Kadane (1993) and Islam and Pettit

(2014, Table 1).

Such considerations point to a major difficulty of the proposed approach which is

the quantification of the “costs” associated to the Bayes risk and to the sampling effort.

Although the latter may be objectively calculated in terms of the technical aspects of

the actual collection and analysis methods, the former certainly poses a complicated

problem since it depends on quantitatively evaluating consequences of declaring a ship

compliant or not based on a rule defined in terms of the credible interval. This is certainly

a controversial and difficult problem; however, it permeates directly or indirectly, all

methods of sample size determination and decision making.
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Table 3: Simulated organism counts obtained via the negative binomial model with φ = 8, w = 1 and λ

fixed as reported.

λ counts

7
8 6 5 10 18 2 5 13 3 8 10 4 7

7 8 11 6 3 3 4 12 3 1 6 2 7

8 1 11 3 1 5 8 5 2 8 5 5 11

4 4 3 11 6 2 10 6 6 7 7 8

10
11 5 22 23 12 4 13 13 3 18 5 10 10

15 20 27 3 15 4 5 11 11 21 7 3 6

10 5 9 8 8 5 12 12 2 5 11 9 14

10 9 10 15 15 10 11 8 7 7 8 6

13
15 6 21 31 19 17 5 23 7 13 12 25 24

6 24 12 3 11 7 23 13 5 3 9 16 9

9 12 11 7 15 16 3 7 15 12 17 13 11

13 17 20 9 11 8 9 11 8 12 3 13

For illustrative purposes, we consider a set of hypothetical organism counts to obtain

the associated credible interval based on the optimal sample size. Casas-Monroy et al.

(2020) obtained estimates for φ varying from 8 to 22. For φ= 8, the optimal sample size

under the negative binomial/gamma model with λ0 = 10, prior variance equal to 4 and

c = 0.010 is no = 51 (Table 2). We generated 51 observations from a negative binomial

model with λ = 7, φ = 8 and w = 1 (see Table 3). Given the generated observations,

we drew a sample of size 10,000 from the posterior distribution of λ with a burn-in

of 1,000 iterations and a thinning of 10. The corresponding credible interval [a∗,b∗] is

[6.10,7.05]. Now, if we generate 51 observations from a negative binomial model with

λ = 10 (Table 3), the corresponding credible interval is [9.61,10.89]. Finally, if we set

λ = 13 to generate the 51 observations, the corresponding interval is [11.58,13.04]. In

all cases, the credible interval contains the value of the parameter of interest and lead to

correct decisions relatively to compliance v.s. non-compliance with the D-2 standard.
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