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a b s t r a c t

We consider the computation of sample sizes for estimating the mean concentration of organisms in
ballast water. Given the possible heterogeneity of their distribution in the tank, we adopt a negative
binomial model to obtain confidence intervals for the mean concentration. We show that the results
obtained by Chen and Chen (2012) in a different set-up hold for the proposed model and use them to
develop algorithms to compute sample sizes both in cases where the mean concentration is known to lie
in some bounded interval or where there is no information about its range. We also construct simple
diagrams that may be easily employed to decide for compliance with the D-2 regulation of the Inter-
national Maritime Organization (IMO).

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With the expansion of transoceanic trade routes and the
increasing tonnage of commercial ships, ballast water discharges
have become a major cause of unintentional introduction of inva-
sive species to coastal waters worldwide (Ruiz et al., 2000).
Harmful species released from ballast tanks may develop resident
populations in recently colonized areas, leading to significant
ecological and economic impacts in addition to public health con-
cerns (Carlton, 2001; McCarthy et al., 1992). A convention on ballast
water management was adopted by the International Maritime
Organization (IMO, 2004) and is expected to enter into force soon.
The D-2 regulation of the IMO convention requires that ballast
water discharged by ships contain (i) fewer than 10 viable organ-
isms with minimum dimension �50 mm per m3, and (ii) fewer than
10 viable organisms with minimum dimension between 10 mm and
50 mm per mL.

The installation of on-board treatment units has been accepted
by the international community as an effective strategy to attain
the required concentrations and several systems have been
approved by the IMO since the early years of the convention
rubens@usp.br (R.M. Lopes),
implementation (Tsolaki and Diamadopoulos, 2009). However, a
significant challenge persists on how to evaluate compliance with
the D-2 concentration standards because of the heterogeneous
distribution of organisms within ballast tanks, their small size and
the high discharge throughput. Given the enormous amount of
ballast water carried in a great number of commercial ships, it is not
practical to examine the entire volume and one must rely on
sampling to verify compliance with the D-2 standards. For such
purposes, sampling schemes must guarantee that the D-2 stan-
dards are satisfied up to a pre-specified margin of error. In this
context, Miller et al. (2011) employed the Poisson distributionwhile
Bierman et al. (2012), Frazier et al. (2013) and Costa et al. (2015)
approached the problem by using the negative binomial distribu-
tion from a hypothesis testing point of view. Such an approach is
convenient for decision making, but does not provide the magni-
tude of the mean concentration estimates. To incorporate this
feature, we propose a solution based on confidence intervals.

Costa et al. (2015) indicated that under the negative binomial
model, the sample volume v may consist of n aliquots with volume
w so that an estimate of the mean concentration l isbl ¼ ðnwÞ�1Pn

i¼1Xi where Xi is the number of organisms detected in
the i-th aliquot. Then, given an aliquot volume, from an estimation
perspective, the problem may be viewed as one of determining the
minimumnumber of aliquots required to obtain estimates bl subject
to a fixed upper bound on the estimation error. From the statistical
point of view, the solution is similar for organisms with dimension
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�50 mm or in the range 10 mme50 mm. In either case, we present
our results in terms of organisms/unit volume so that we may use
either mL or m3 as the basis for specifying the mean concentration.

Chen (2008, 2011) and Chen and Chen (2015) proposed algo-
rithms to compute sample sizes for the estimation of the mean of
Poisson or binomial distributions with given bounds on the abso-
lute or on the relative errors of maximum likelihood estimators.
These authors showed that sample sizes may be obtained when the
mean is known to lie within a bounded interval. Gamrot (2013)
extended Chen’s results and proposed a method for calculating
the minimum sample size controlling the relative error in the
binomial case. Chen and Chen (2012) proved that these results may
be applied for estimating parameters of discrete distributions with
the assumption that the coverage probability of the corresponding
confidence interval considered as a function of the parameter of
interest is continuous and unimodal. Our objectives are (i) to show
that this assumption holds for the negative binomial distribution
and (ii) to provide statistical procedures to obtain reliable mean
concentration estimates, which may be used to verify compliance
with the D-2 standards. We tested and empirically evaluated the
proposed models under two different scenarios: (i) cases where the
mean concentration is known to lie in a given interval and (ii) cases
where no prior information on the mean concentration is available.

For clarity, the notation employed on the text is summarized in
Table 1.
2. Minimum number of aliquots for cases where the mean
concentration is known to lie in a given interval

We assume a negative binomial distribution to compute the
probability of observing the number X of organisms in an aliquot of
fixed volume w obtained from a tank with mean concentration l,
i.e.,

ℙ½X ¼ xjl;4� ¼ Gð4þ xÞ
Gðxþ 1ÞGð4Þ

�
wl

wlþ 4

�x� 4

wlþ 4

�4

; l;4>0;

(1)

for x ¼ 0,1, …, where GðxÞ ¼ R∞
0 tx�1e�tdt is the gamma function

and 4 is a shape parameter, also known in the literature as aggre-
gation, clustering or heterogeneity parameter. In the ballast water
set-up, small values of 4 correspond to more heterogeneous dis-
tribution of the organisms in the tank. Large values of 4, on the
other hand, correspond to homogeneous distributions and in this
case, the negative binomial distribution may be approximated by a
Poisson distribution.

Under the negative binomial distribution, the expected value of
X is wl and the corresponding variance is wl þ (wl)2/4, implying
that this distribution may also model over-dispersion (variance
larger than the mean). The parameter we are concerned with is the
Table 1
Summary of the notation employed in the text.

X Number of organisms
w Aliquot volume
l Mean concentration in
4 Shape parameter of th
n Number of aliquots
v Total sample volume (
1 � r Confidence level
εa Upper bound on the a
εr Upper bound on the re
a,b Lower and upper boun
ℙ½AjB� Probability of the even
G Gamma function
mean concentration l in the ballast water tank. Suppose that n
aliquots with fixed volume w have been randomly collected from
the tank and that the corresponding number of organisms X1,…,Xn

follow independent negative binomial distributions. Then, we may
use the maximum likelihood estimator bl ¼ ðnwÞ�1Pn

i¼1Xi, to esti-
mate the mean concentration l. Under this set-up, we want to
determine the minimum number of aliquots such that the upper
bounds on the absolute estimation error ð

����bl � l

����Þ or on the relative
estimation error ð

����bl � l

����=lÞ are εa > 0 and εr2(0,1), respectively,
with minimum pre-specified probability (confidence level) 1 � r,
r2(0,1), i.e., to determine n such that for all l

ℙ

����bl � l

����< εa

" #
>1� r (2)

or

ℙ

����bl � l

����< εrl

" #
>1� r: (3)

Chen (2011) and Chen and Chen (2015) establish methods to
compute the minimum sample size for constructing confidence
intervals for the mean of a Poisson or of a binomial distribution
with fixed confidence levels, controlling the absolute estimation
error, the relative estimation error or both. The only requirement is
the specification of a lower and an upper bound on themean. In this
setting, Chen (2011) and Chen and Chen (2015) show that the
minimum confidence level, 1 � r, for ℙ½

����bl � l

����< εa� or for
ℙ½
����bl � l

����< εrl�, considered as functions of l, may be determined by
computing these probabilities a finite number of times. We extend
such results to the negative binomial distribution and show how
they may be used to construct algorithms to compute the required
sample sizes. The results are obtained in the form of a theorem
stated and proven in the Supplementary material (Theorem 1)
because of its technical nature.

In particular, an algorithm to compute the minimum number n
of aliquots with volume w such that (2) is satisfied in cases where
there is a priori information that the mean concentration l belongs
to the interval [a,b] is described as follows.

Step 1. Set a value for εa;
Step 2. Set values for w, r, a, b, 4 and take n ¼ 2;
Step 3. Define the finite set of values of l for which ℙ½

����bl � l

����< εa�
must be computed as the union of the sets {a,b},
f[=ðnwÞ þ εa2ða; bÞ; [ integerg and
f[=ðnwÞ � εa2ða; bÞ; [ integergwhich has at most 2n(b � a) þ 4
elements;
Step 4. Compute ℙ½

����bl � l

����< εa� using (1) for all elements in the
set defined in Step 3 and obtain the corresponding minimum;
detected in a sample aliquot

the ballast water tank
e negative binomial distribution (considered known)

¼nw)

bsolute estimation error
lative estimation error
ds for the mean concentration
t A given the event B



E.G. Costa et al. / Journal of Environmental Management 180 (2016) 433e438 435
Step 5. If this minimum coverage probability is greater than
1 � r, stop. The value n obtained in this step is the required
value. Otherwise, set n ¼ n þ 1 and return to Step 3.

The algorithm for cases where an upper bound is fixed for the
relative estimation error instead of the absolute estimation error is
similar; it suffices to replace ℙ½

����bl � l

����< εa� for ℙ½
����bl � l

����< εrl� and
define the set for which this probability must be computed as the
union of the sets {a,b}, f[=½nwð1� εrÞ�2ða; bÞ; [ integerg and
f[=½nwð1þ εrÞ�2ða; bÞ; [ integerg which has at most 2n(b � a) þ 4
elements. Details are presented in the Supplementary material, and
an R code for the practical implementation of both versions of the
algorithm may be downloaded from www.ime.usp.br/~jmsinger/
NBsamplesize.

In Tables 2 and 3, we present the minimum number of aliquots n
computed via the algorithm described above for fixed bounds
either on the absolute or on the relative estimation errors in
different scenarios assuming that the mean concentration lies
either in the interval [5,15] or in [2,25].

If for example, we have prior information that the mean con-
centration is between 5 and 15 organisms/unit volume and that the
aggregation parameter is 4 ¼ 10, fixing the maximum absolute
estimation error at εa ¼ 2 and the minimum confidence level at
0.95, it follows from Table 2 that the requiredminimumnumbers of
aliquots n are 1476, 168, 52 and 37 for aliquot volumes 0.01, 0.1, 0.5
and 1, respectively. On the other hand, if we know that the con-
centration is between 2 and 25 organisms/unit volume, it follows
from Table 3 that the required minimum numbers of aliquots n are
2476, 303, 109 and 85 for aliquot volumes 0.01, 0.1, 0.5 and 1,
respectively. The corresponding decision is to declare compliance
with the D-2 standards if the sample concentration bl <8ð¼ 10� εaÞ
or non-compliance, if bl >12ð¼ 10þ εaÞ. In a similar context
regarding the information on the aggregation parameter 4,
knowing that the mean concentration lies in [5,15], fixing the
maximum relative estimation error at εr ¼ 0.1 and the minimum
confidence level at 0.95, it follows from Table 2 that the required
minimum numbers of aliquots n are 7891, 820, 196 and 117 for
aliquot volumes 0.01, 0.1, 0.5 and 1, respectively. For mean con-
centrations in the interval [2,25], it follows from Table 3 that the
required minimum number of aliquots n are 19,500, 1996, 430 and
236 for aliquot volumes 0.01, 0.1, 0.5 and 1, respectively. Here,
compliance with the D-2 standards is characterized whenbl <9ð¼ 10ð1� εrÞÞ, and non-compliance whenbl >11ð¼ 10ð1þ εrÞÞ.
Table 2
Minimum number of aliquots n and total sample volume v (within parentheses) with prio
minimum confidence level 1 � r ¼ 0.95.

w

0.5 10

0.01 εa 1 7501 (76) 5851 (5
2 1876 (19) 1476 (1

εr 0.05 34,066 (341) 31,181 (3
0.1 8582 (86) 7891 (8

0.1 εa 1 2306 (231) 666 (6
2 578 (58) 168 (1

εr 0.05 6180 (618) 3260 (3
0.1 1551 (156) 820 (8

0.5 εa 1 1845 (923) 204 (1
2 461 (231) 52 (2

εr 0.05 3695 (1848) 775 (3
0.1 925 (463) 196 (9

1 εa 1 1787 (1787) 145 (1
2 446 (446) 37 (3

εr 0.05 3384 (3384) 465 (4
0.1 847 (847) 117 (1
Diagrams that may help the decision about compliance with the
D-2 standards are displayed in Figs. 1 and 2. If the sample con-
centration falls in the green (red) interval we declare (non-)
compliance with the D-2 standards; in the yellow interval, more
aliquots should be obtained before a decision may be made with
the prescribed confidence level. For any given sample concentra-
tion obtained with the required minimum number of aliquots,
projections of the endpoints of vertical line segments comprised in
the shaded region correspond to the limits of confidence intervals
for themean concentration satisfying the bounds on the absolute or
relative estimation error, respectively.
2.1. Simulation study

To check our results in practice we carried out a simulation
study fixing εa ¼ 1, εr ¼ 0.05, r ¼ 0.05 and l at 1, 3.5, 9, 13, 20 or 28.
For each scenario, we drew 1000 samples from a negative binomial
distribution with number of aliquots n determined from Tables 2
and 3, and computed the empirical coverage probability as the
proportion of samples for which

����bl � l

����< εa in the absolute error
case, or for which

����bl � l

����=l< εr in the relative error case. For the
cases where l is in [5,15] or [2,25] we expect the estimated
coverage probability to be at least 0.95. The results are displayed in
Table 4 and in Tables 2e4 in the Supplementary material.
3. Minimum number of aliquots for cases with no
information on the mean concentration bounds

When there is no prior information about the mean concen-
tration range, we propose a simple formula to compute the mini-
mum number of aliquots required to estimate l, adapting the
results of Chen (2008) to the negative binomial distribution. In this
case, however, computation of the minimum number of aliquots
requires that upper bounds be set for both the absolute and relative
errors simultaneously, i.e., it relates to the determination of the
minimum number of aliquots n such that

ℙ

����bl � l

����< εa or
����bl � l

����< εrl

" #
>1� r; (4)

where 1 � r, r2(0,1) is the minimum confidence level.
The proposed approach does not require asymptotic approxi-

mations; it suffices to fix the confidence level, 1 � r, the aliquot
r information that the mean concentration belongs to the interval [a,b] ¼ [5,15] and

4

50 100 1000

9) 5801 (59) 5801 (59) 5801 (59)
5) 1451 (15) 1451 (15) 1451 (15)
12) 30,991 (310) 30,991 (310) 30,991 (310)
0) 7800 (78) 7800 (78) 7800 (78)
7) 596 (60) 591 (60) 581 (59)
7) 151 (16) 148 (15) 148 (15)
26) 3140 (314) 3119 (312) 3100 (310)
2) 790 (79) 790 (79) 780 (78)
02) 135 (68) 126 (63) 119 (60)
6) 35 (18) 32 (16) 30 (15)
88) 652 (326) 636 (318) 620 (310)
8) 164 (82) 160 (80) 156 (78)
45) 76 (76) 68 (68) 60 (60)
7) 20 (20) 18 (18) 16 (16)
65) 341 (341) 326 (326) 313 (313)
17) 86 (86) 82 (82) 79 (79)

http://www.ime.usp.br/~jmsinger/NBsamplesize
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Table 3
Minimum number of aliquots n and sample volume v (within parentheses) with prior information that the mean concentration belongs to the interval [a,b] ¼ [2,25] and
minimum confidence level 1 � r ¼ 0.95.

w 4

0.5 10 50 100 1000

0.01 εa 1 14,451 (145) 9851 (99) 9701 (98) 9651 (97) 9651 (97)
2 3626 (37) 2476 (25) 2426 (25) 2426 (25) 2426 (25)

εr 0.05 80,477 (805) 77,477 (775) 77,477 (775) 77,477 (775) 77,477 (775)
0.1 20,228 (203) 19,500 (195) 19,500 (195) 19,500 (195) 19,500 (195)

0.1 εa 1 5766 (577) 1206 (121) 1011 (102) 991 (100) 966 (97)
2 1443 (145) 303 (31) 256 (26) 248 (25) 243 (25)

εr 0.05 10,848 (1085) 7901 (791) 7796 (780) 7748 (775) 7748 (775)
0.1 2723 (273) 1996 (200) 1950 (195) 1950 (195) 1950 (195)

0.5 εa 1 4995 (2498) 435 (218) 243 (122) 219 (110) 197 (99)
2 1249 (625) 109 (55) 61 (31) 55 (28) 50 (25)

εr 0.05 4627 (2314) 1704 (852) 1581 (791) 1570 (785) 1550 (775)
0.1 1161 (581) 430 (215) 400 (200) 395 (198) 390 (195)

1 εa 1 4898 (4898) 338 (338) 146 (146) 122 (122) 100 (100)
2 1224 (1224) 85 (85) 37 (37) 31 (31) 26 (26)

εr 0.05 3851 (3851) 931 (931) 805 (805) 791 (791) 775 (775)
0.1 965 (965) 236 (236) 203 (203) 200 (200) 195 (195)
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Fig. 1. Decision diagram for the absolute estimation error case with εa ¼ 2.

λ : sample concentration

λ 
: t

ru
e 

(u
nk

no
w

n)
 c

on
ce

nt
ra

tio
n

Relative error case (εr = 0.1)

9 11 15

10
13

.6
16

.7

10

D−2 limit

compliance range
doubt range
non−compliance range

Fig. 2. Decision diagram for the relative error case with εr ¼ 0.1.
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volume w, and the upper bounds for the absolute and relative
estimation errors. The basic result is provided in Theorem 2 stated
and proven in the Supplementary material. The required number of
aliquots is the smallest integer n satisfying

n>
εr

εa

� log 2=rð Þ
w 1þ εrð Þlog 1þ εrð Þ � εr

εa
4þw 1þ εrð Þ

h i
log 1þ wεaεr

4εrþwεa

� � :

(5)

An R code to implement the computation of the minimum
number of aliquots may be downloaded from www.ime.usp.br/
~jmsinger/NBsamplesize.

The difference between (5) and the corresponding result in
Chen (2008) lies in the denominator, where in the latter, the term εr

is replaced by

�
εr

εa
4þwð1þ εrÞ

�
log

�
1þ wεaεr

4εr þwεa

�
: (6)

Since, as expected, this term is greater than wεr, it is clear that
the number of aliquots obtained under the negative binomial dis-
tribution are larger than those computed under the Poisson dis-
tributionwith the same values forw, εa, εr and r. Note also that only
the second term in the denominator of (5) depends on 4. The limit
of (6) as 4 approaches infinity i.e., as the concentration distribution
becomes more homogeneous, is wεr, which suggests that for large
values of the shape parameter 4, the required number of aliquots
may be obtained from the Poisson distribution. Results for given
values of 4 are displayed in Table 5.

http://www.ime.usp.br/~jmsinger/NBsamplesize
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Table 4
Estimated coverage probability for some scenarios using the number of aliquots
presented in Table 2 with εa ¼ 1, [a,b] ¼ [5,15].

w 4 n l

1 3.5 9 13 20 28

0.5 7501 1 1 0.994 0.965 0.900 0.809
10 5851 1 1 0.990 0.976 0.932 0.831

0.01 50 5801 1 1 0.985 0.961 0.905 0.851
100 5801 1 1 0.991 0.973 0.911 0.850

1000 5801 1 1 0.989 0.971 0.904 0.845
0.5 2306 1 1 0.998 0.978 0.868 0.731

10 666 1 1 0.989 0.965 0.883 0.815
0.1 50 596 1 1 0.988 0.968 0.913 0.851

100 591 1 1 0.987 0.955 0.917 0.836
1000 581 1 1 0.983 0.969 0.921 0.860

0.5 1845 1 1 0.999 0.976 0.849 0.711
10 204 1 1 0.992 0.963 0.904 0.786

0.5 50 135 1 1 0.991 0.966 0.918 0.830
100 126 1 1 0.990 0.967 0.891 0.815

1000 119 1 1 0.985 0.970 0.900 0.867
0.5 1787 1 1 0.997 0.974 0.860 0.696

10 145 1 1 0.998 0.975 0.882 0.754
1 50 76 1 1 0.989 0.963 0.901 0.811

100 68 1 1 0.995 0.975 0.915 0.839
1000 60 1 1 0.988 0.963 0.889 0.848
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4. Discussion

We considered a procedure to obtain the minimum number of
aliquots of a given volume to estimate the mean concentration of
viable organisms in ballast water tanks with a pre-specified pre-
cision and indicated how the results may be employed to verify
compliance to the D-2 standards.

As discussed in Costa et al. (2015), sample size determination in
this set-up is highly dependent on the heterogeneity of the distri-
bution of organisms in the ballast water tank. This heterogeneity
may be summarized by the parameter 4 determining the shape of
the negative binomial distribution adopted as a model for the
number of organisms in the sample. If we have prior information
that the organism distribution in the tank is homogeneous, then
the value of the parameter4 is large; otherwise, if we know that the
corresponding distribution is heterogeneous, the aggregation
parameter 4 must be small. Information on 4 must be obtained
from historical or experimental data, such as in simulations of
water sloshing patterns in ballast water tanks (Arai et al., 2002).

The results in Tables 2 and 3 indicate that when the aggregation
Table 5
Minimum number of aliquots n and total sample volume (within parentheses) required

w εa εr Negat

0.5 10

0.01 1 0.05 21,099 (211) 15,305 (154)
0.1 9194 (92) 7699 (77)

2 0.05 13,599 (136) 7805 (79)
0.1 5384 (54) 3889 (39)

0.1 1 0.05 7599 (760) 1805 (181)
0.1 2336 (234) 841 (85)

2 0.05 6849 (685) 1055 (106)
0.1 1955 (196) 460 (46)

0.5 1 0.05 6399 (3200) 605 (303)
0.1 1726 (863) 232 (116)

2 0.05 6249 (3125) 455 (228)
0.1 1650 (825) 155 (78)

1 1 0.05 6249 (6249) 455 (455)
0.1 1650 (1650) 155 (155)

2 0.05 6174 (6174) 380 (380)
0.1 1612 (1612) 117 (117)
parameter is large, i.e., when the distribution of organisms in the
tank is homogeneous, the total sample volume is constant irre-
spectively of the aliquot volume, suggesting that the choice of the
aliquot volume is a matter of convenience. This favours the usual
practice of concentrating a large volume of water and taking the
concentrate as the sample. Consider the results displayed in Table 2
and suppose that the largest admissible error in estimating the
mean concentration is εa ¼ 2 organisms/m3. When the distribution
is homogeneous, it follows that the sample volume required to
guarantee this margin of error is 15 m3, irrespectively of the aliquot
volume. Therefore, one may concentrate the 15 m3 of ballast water
and do a single analysis to identify the number of sampled organ-
isms. If, for example, the organism count is 180, a simple calculation
based on the Poisson distribution indicates that the lower and
upper limits of an approximate 95% confidence interval are 10.25
and 13.75 for the mean concentration (leading to a non-compliance
decision). If, on the other hand, a sample of 5 m3 is considered and
the organism count is 60, the corresponding lower and upper limits
of an approximate 95% confidence interval are 8.96 and 15.04, and
one would need to sample a larger volume to reach a decision (see
Fig. 1). Details are presented in the Supplementary material.

When the aggregation parameter is small i.e., when the distri-
bution of organisms in the tank is heterogeneous, the total sample
volume increases, suggesting that sampling more aliquots with
small volume will capture the heterogeneity of the organism dis-
tribution with a smaller sample volume. Even if the sample ballast
water is concentrated, a large number of aliquots must be collected
to achieve the desired margin of error. This is in line with the flow
integration sampling protocol (IMO, 2015), which considers
obtaining multiple samples over a specified time scale repeatedly
throughout the discharge.

Our simulation study suggests that when the absolute error is
considered, the estimated coverage probability is greater than the
minimum confidence level, evenwhen the mean concentration l is
smaller than the lower bound. The situation is reversed when l is
greater than the upper bound. In the relative error case, the nom-
inal confidence level is not attained only when l is smaller than the
lower bound. In the absolute error case it is important to specify the
upper bound (b) correctly to guarantee the minimum coverage
probability 1 � r, whereas in the relative error case it is important
to specify the lower bound (a). We also note that the coverage
probabilities obtained in our simulation study are generally larger
than the nominal level (adopted as 95%), suggesting that the results
obtained from Theorems 1 and 2 are conservative, in the sense that
to satisfy (4) with minimum confidence level 1 � r ¼ 0.95.

ive binomial (4¼) Poisson

50 100 1000

15,061 (151) 15,030 (151) 15,003 (151) 15,000 (150)
7636 (77) 7628 (77) 7621 (77) 7620 (77)
7561 (76) 7531 (76) 7503 (76) 7500 (75)
3826 (39) 3818 (39) 3811 (39) 3810 (39)
1561 (157) 1531 (154) 1503 (151) 1500 (150)
778 (78) 770 (77) 763 (77) 762 (77)
811 (82) 781 (79) 754 (76) 750 (75)
397 (40) 389 (39) 382 (39) 381 (39)
361 (181) 331 (166) 304 (152) 300 (150)
169 (85) 161 (81) 154 (77) 153 (77)
211 (106) 181 (91) 154 (77) 150 (75)
92 (46) 85 (43) 77 (39) 77 (39)

211 (211) 181 (181) 154 (154) 150 (150)
92 (92) 85 (85) 77 (77) 77 (77)

136 (136) 106 (106) 79 (79) 75 (75)
54 (54) 46 (46) 39 (39) 39 (39)
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smaller sample volumes may be enough to ensure the required
limits on the estimation errors are attained. This is the object of
ongoing research.

According to the suggested sampling scheme, the decision with
respect to compliance with the D-2 standards must be taken after
the entire sample is collected. This may be a problem when the
mean concentration is large, since non-compliance will possibly be
detected only after the entire deballasting process is completed. A
more sensible scheme should consider a sequential procedure in
which non-compliance could be evaluated as the ballast water is
discharged. A naive approach to this alternative based on the pro-
posed sample size determination could be considered as follows.
Suppose that n aliquots are required to guarantee that the esti-
mation error falls within the prescribed limit. We may consider a
decision based on the first n/K aliquots where K is a given constant.
We give the ship owner the benefit of the doubt by supposing that
no organisms are detected in the remaining n � n/K aliquots and
use these pseudo-observations along with those obtained in the
first n/K aliquots to estimate the mean concentration. If the lower
limit of the corresponding confidence interval for the mean con-
centration is larger than the D-2 standards, we declare non-
compliance. Otherwise, we abandon the pseudo-observations,
take an extra n/K aliquots assuming that no organisms are detected
in the remaining n � 2n/K aliquots and repeat the decision process.
Consider, for example, a situation where n ¼ 100 and K ¼ 10; then
we may count the organisms in the first 10 (¼100/10) aliquots,
assume that there are no organisms in the remaining 90
(¼100 � 100/10) aliquots and apply the decision rule. If there is no
evidence against compliance, wemay sample 10 additional aliquots
and count the organisms in the 20 available aliquots, assume that
there are no organisms in the remaining 80 (¼100 � 2 � 100/10)
aliquots and reapply the decision rule. Again if there is no evidence
against compliance, we repeat the procedure until we obtain evi-
dence against compliance or complete the sample of 100 aliquots.
This approach may be useful to detect cases where the mean
concentration is very large, reducing costs and preventing potential
impacts.

Unfortunately, the stringent limits imposed by the D-2 con-
centration standards implies that large volumes of ballast water
must be sampled to achieve reasonable margins of error, especially
for organisms with dimension�50 mm. If, for example, the decision
is based on a (more realistic) sample of 10 L and the mean con-
centration is 13 organisms/m3, the probability of declaring non-
compliance is approximately 12%. The scenario for organisms
with dimension in the range 10 mm and 50 mm is more favourable,
but still, a large number of aliquots must be examined when the
distribution in the tank is heterogeneous.

A global set of standards or best practices for ballast water
verification currently does not exist, and an intense debate persists
within the IMO on the complex issue of sampling and analysis for
compliance testing (IMO, 2015). One of the major challenges is to
account for the uneven distributions of organisms at different
depths of ballast tanks (Murphy et al., 2002; First et al., 2013),
which is expected to result in variable concentrations along the
discharge. Despite the IMO recommendations on taking repeated
samples during the discharge to increase the ability to depict het-
erogeneous distributions, our results suggest that the number of
samples generated by such an approach may be impractically large
when using standard sampling and evaluation methods (e.g.,
sequential filtering through plankton nets followed by lab-based
microscopic analysis). However, instead of providing evidence
that shipboard analysis for compliance testing is not feasible, this
investigation emphasizes the need for developing innovative
sampling and analysis methods to collect and process a large
number of samples during the ballast water discharge. This could
be achieved by high-volume particle imaging instruments as part of
sample-in-flow monitoring systems (Matuszewski et al., 2015).
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