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Ballast water sampling is one of the problems still needing investigation in order to enforce the D-2 Reg-
ulation of the International Convention for the Control and Management of Ship Ballast Water and Sed-
iments. Although statistical ‘‘representativeness’’ of the sample is an issue usually discussed in the
literature, neither a definition nor a clear description of its implications are presented. In this context,
we relate it to the heterogeneity of the distribution of organisms in ballast water and show how to specify
compliance tests under different models based on the Poisson and negative binomial distributions. We
provide algorithms to obtain minimum sample volumes required to satisfy fixed limits on the probabil-
ities of Type I and II errors. We show that when the sample consists of a large number of aliquots, the
Poisson model may be employed even under moderate heterogeneity of the distribution of the organisms
in the ballast water tank.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The D-2 Regulation of the International Convention for the Con-
trol and Management of Ship Ballast Water and Sediments adopted
by the International Maritime Organization (IMO) in 2004 sets
upper limits on the concentrations of viable organisms in ballast
water discharges to which ships must comply with (IMO, 2004).
In particular, this regulation requires that ballast water discharged
by ships contain (i) fewer than 10 viable organisms with minimum
dimension P 50 lm per m3, and (ii) fewer than 10 viable organ-
isms with minimum dimension between 10 lm and 50 lm per mL.

Because of cost and time restrictions, examination of the entire
volume of discharge is not feasible and sampling must be
employed instead. In addition to the D-2 regulation, the G2 guide-
line from the IMO Guidelines on Sampling of Ballast Water (IMO,
2008) states that ‘‘the sampling protocol should result in samples that
are representative of the whole discharge of ballast water from any
single tank or any combination of tanks being discharged.’’

Although there has been some discussion regarding whether
the D-2 regulation refers to any volume of water sampled from
the discharged ballast water or to the entire discharge, authors like
Gollasch et al. (2007) or Frazier et al. (2013) suggest that the latter
interpretation seems more adequate. This is the approach we
adopt. Issues concerning the implications of statistical ‘‘representa-
tiveness’’ of the sample are also extensively discussed in the liter-
ature. Experimental and simulated data to explore this aspect of
the regulation was considered by Miller et al. (2011) and Carney
et al. (2013), but also fall short of an explicit definition of a ‘‘repre-
sentative sample’’. These two aspects of ballast water sampling
seem to be the source of confusion and difficulty in setting the
track required to enforce the IMO regulation.

A binomial model to compute the sample size ‘‘required to
ensure that the sample proportion is representative of the popula-
tion’’ was adopted by Basurko et al. (2011), but ground their solu-
tion on some rather restrictive assumptions. Furthermore, their
results suggest that very large volumes of discharged ballast water
should be sampled to assure compliance with reasonable accuracy.
Poisson distribution models which lead to more realistic results
was employed by Miller et al. (2011). Both approaches, however,
are based on the assumption that the concentration of viable
organisms (hereafter referred to as ‘‘concentration’’) is homoge-
neous throughout the ballast water tank. This may not be reason-
able in practice (Miller et al., 2011; Carney et al., 2013). More
recently, (Bierman et al. (2012), Costa (2013) and Frazier et al.
(2013)), working independently, suggested negative binomial
(NB) models that take the expected heterogeneity of the concen-
tration into account.
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Table 1
Summary of the notation employed in the text.

X Number of organisms detected in the sample
V Total volume of the ballast water tank
Vh Volume of stratum h of the ballast water tank
v Sample volume
k Concentration in the ballast water tank
kh Concentration in stratum h of the ballast water tank
d; c; g; / Parameters that define the form of the function that describes the variation of the concentration in the ballast water tank
a Probability of Type I error (declaring non-compliant a ship that in reality complies with the D-2 regulation)
b Probability of Type II error (declaring compliant a ship that in reality does not comply with the D-2 regulation)
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A formal definition based on the common sense that ‘‘represen-
tative’’ samples are scaled down versions of the population and
methods for selecting them was provided by Grafström and
Schelin (2014). However, they mention that ‘‘it is sometimes of more
interest to have a small variance of an estimator than to have repre-
sentative samples’’. As the D-2 regulation only requires that the
overall concentration in the ballast water tank be smaller than a
specified limit, from the statistical point of view, ‘‘representative’’
samples are those for which the analysis allows inference on this
concentration with a specified accuracy.

Given that accuracy is directly related to the underlying statis-
tical model and that different models are based on varying
assumptions on the distribution of organisms in the tank, hetero-
geneity plays a major role in the quest for statistical representa-
tiveness. Based on empirical results, the Poisson model may be
used even when the organisms are not randomly distributed
within the ballast water tank, provided the sample consists of mul-
tiple independent aliquots (Frazier et al., 2013). We develop this
issue further and propose specific models to accommodate differ-
ent assumptions on the heterogeneity of the distribution and
derive threshold values for determining whether a ship complies
with the D-2 regulation under different sampling schemes and pre-
cision requirements.

In the second section we outline the technical details, compute
the thresholds for each scenario and illustrate the procedures with
data from Bierman et al. (2012). We conclude with the discussion
of some practical issues and suggestions for future research in the
third section.
1 An R code for its practical implementation is presented in the Supporting
Information.
2. Statistical methods and results

We develop our discussion referring to the regulation concern-
ing viable organisms (hereafter referred to as ‘‘organisms’’) with
minimum dimension P 50 lm. The results are directly applicable
to organisms with minimum dimension between 10 lm and
50 lm by changing the measurement units appropriately.

The parameter we are concerned with is the concentration k per
m3 in the discharged ballast water. In statistical terms, deciding
whether a ship complies or not with the D-2 regulation is equiva-
lent to testing the null hypothesis k 6 10 versus the alternative
hypothesis k > 10 based on a sample of v m3 of ballast water
obtained from one or more aliquots collected during the discharge.
The test procedure consists in determining a compliance threshold
(c) in terms of the number of organisms observed in the sample,
above which the ship is declared non-compliant. The compliance
threshold is obtained by assuming an appropriate probability
model and fixing the probability of Type I error (a) as well as the
probability of Type II error [bðkAÞ] for a given value of the concen-
tration kA > 10. Type I errors occur if we decide for non-compliance
when, in fact, k 6 10; Type II errors occur if we decide for compli-
ance when, in fact, k > 10. The value 1� bðkAÞ is the power of the
test to detect a non-compliant ship for which the concentration is
k ¼ kA > 10. Ideally, a and b should be very small, but this may
require large sample volumes and their choice must be based on
cost, time and technical considerations.

A crucial point in this process relates to the choice of the prob-
ability model. We approach this problem by considering different
assumptions on the distribution of organisms in the discharged
ballast water. A summary of the notation employed in the text is
presented in Table 1.

2.1. Sampling with homogeneous concentration under a Poisson model

We start by assuming an homogeneous distribution, in which
case a Poisson model with mean vk may be adopted to compute
the probability of observing the number X of organisms in a sample
with volume v, i.e.,

PðX ¼ kjv ; kÞ ¼ expð�vkÞðvkÞk=k!; k ¼ 0;1; . . . : ð1Þ

The decision rule is to declare non-compliance if X > c where c is
determined from

a ¼ PðX > cjv; k ¼ 10Þ and bðkAÞ ¼ PðX 6 cjv ; k ¼ kAÞ; ð2Þ

for some specified kA > 10. If the sample volume v is composed of n
independent ballast water aliquots with volumes wi collected at dif-
ferent time intervals during the discharge and Xi denotes the num-
ber of organisms observed in the i-th aliquot, then X ¼

Pn
i¼1Xi

follows a Poisson distribution with mean
Pn

i¼1wik ¼ vk and the
decision procedure is the same as described above. The reader is
referred to Haight (1967) for details. An algorithm to compute the
minimum sample volume v (or the number n of aliquots, each with vol-
ume w) required to satisfy pre-specified limits (a and b) on the proba-
bilities of Type I and II errors under (1) and (2) is described as follows1

Step 1. Set initial values for a; b; w (or v0) and k ¼ kA > 10;
Step 2. Take n ¼ 2 (or v ¼ v0);
Step 3. Compute c through the first equation in (2). Then, with
this value of c, compute bðkAÞ through the second equation in
(2);
Step 4. If 1� bðkAÞ P 1� b, stop. The value n (or v) obtained in
this step is the required value. Otherwise, set n ¼ nþ 1 (or
v ¼ v þ �, where � is some convenient value depending on the
dimension of the tank. For example, if the tank has a volume
of 1000 m3 we may set � ¼ 0:001 m3) and return to step 3.

Using this algorithm and specifying different limits for the
probabilities of Type I error (a) and of Type II error for kA ¼ 12,
[bðkAÞ], we obtained the required sample volume (v), the corre-
sponding compliance threshold (c) and the power of the procedure
to detect different non-compliant concentrations (Table 2).

Setting a ¼ 0:05 and bð12Þ ¼ 0:05, for example, the required
sample volume is v ¼ 29:78 m3 and the decision rule is to declare
compliant ships for which the number of organisms X in the sam-



Table 2
D-2 regulation required sample volumes (v) in m3, compliance threshold (c) and power [1� bðkAÞ] to detect non-compliant concentrations (kA > 10) based on a Poisson model.

a b Sample volume (v) Compliance threshold (c) Detection power for kA ¼

11.5 12 12.5 13

0.05 0.05 29.78 326 0.81 0.95 �1 �1
0.05 0.10 23.50 260 0.72 0.90 0.98 �1
0.10 0.05 23.75 257 0.83 0.95 �1 �1
0.10 0.10 18.11 198 0.75 0.90 0.97 �1
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ple is 6326 and non-compliant, ships for which X > 326. In
this setup, if the actual concentration in the discharged ballast
water is kA ¼ 11:5, 12 or 12:5 org m�3, the probabilities of deci-
sions for non-compliance are, respectively, 1� bð11:5Þ ¼ 0:81;
1� bð12Þ ¼ 0:95 and 1� bð12:5Þ � 1.

In practice, the homogeneity assumption underlying the Pois-
son model is seldom sustainable. The distribution of organisms in
the discharged ballast water depends on tank configuration, dis-
charge flow, uptake location, light and oxygen conditions, sedi-
ment ressuspension, duration of transoceanic voyage, types of
organisms present, among other factors (Murphy et al., 2002;
Frazier et al., 2013). The exact distribution is difficult, if not
impossible, to determine a priori. Furthermore, in practice, over-
dispersion, i.e., variance larger than the mean, is usually observed
(Miller et al., 2011; Bierman et al., 2012); this invalidates the
Poisson model. To bypass this problem, we identify alternative
models and indicate the decision rule in each case.
2.2. Sampling with heterogeneous concentration under a stratified
Poisson model

Consider the situation where the discharge may be divided into
H strata with volumes Vh and concentrations kh; h ¼ 1; . . . ;H so
that the overall volume is V ¼

PH
h¼1Vh and the concentration is

k ¼
PH

h¼1Whkh, where Wh ¼ Vh=V . The strata may be defined
according to different water levels or considering different tanks,
for example. Note that we interpret the D-2 regulation as requiring
that k 6 10 and not that each kh 6 10.

Assume now, that the sample volume v is obtained by collecting
a ballast water aliquot with volume vh ¼ nhw in stratum
h;h ¼ 1; . . . ;H, where w is a pre-specified aliquot volume, nh is
the number of aliquots sampled in stratum h, and that the corre-
sponding number of organisms in an aliquot with volume w; Xh,
follows a Poisson model with mean kh. We consider the estimatorbkh ¼ n�1

h

Pnh
i¼1Xhi for kh; h ¼ 1; . . . ;H, and bk ¼PH

h¼1Wh
bkh for k. Our

objective is to determine the minimum sample volume such that
Pðjbk � kj < �Þ > 1� a where � denotes an acceptable difference
between the estimator and the true value of k. For such purpose,
it suffices to establish nh such that Pðjbkh � khj < �hÞ > 1� ah with
�h ¼ �=WhH and a ¼

PH
h¼1ah, provided that the minimum (a) and

maximum (b) values for the concentration in stratum h are speci-
fied, i.e., that kh 2 ½a; b�. This may be accomplished via the results of
Chen (2007) outlined in Appendix A.

For example, consider the total discharge from a tank with vol-
ume 270 m3 in four strata with volumes V1 ¼ 135 m3; V2 ¼ 75 m3;

V3 ¼ 40 m3 and V4 ¼ 20 m3, a sample aliquot w ¼ 0:001 m3, an
estimation error � ¼ 1, and that k1 2 ½1;25�; k2 2 ½1;40�;
k3 2 ½1;30� and k4 2 ½1;60�, and a1 ¼ 0:02; a2 ¼ a3 ¼ a4 ¼ 0:01
which implies a ¼ 0:05. The required number of aliquots in strata
1–4 are, respectively, n1 ¼ 544; n2 ¼ 329; n3 ¼ 71, and n4 ¼ 36,
which implies v1 ¼ 0:544 m3; v2 ¼ 0:329 m3; v3 ¼ 0:071 m3,
and v4 ¼ 0:036 m3. We declare non-compliance if bk > 11
ð¼ 10þ �Þ with a probability of Type I error of a ¼ 0:05. 2
2 An R code for its practical implementation is presented in the Supporting
Information.
2.3. Sampling with heterogeneous concentration under a non-
homogeneous Poisson process model

If the concentration varies continuously along a given dimen-
sion (t) such as volume of discharged ballast water or discharge
time, a non-homogeneous Poisson process (Basawa and Rao,
1980; Ross, 1996) may be employed to model the number of
organisms observed in the sample. According to this model, the
number of organisms observed over the continuous deballasting
process follows a Poisson distribution with mean

R V
0 kðtjhÞdt, where

kðtjhÞ is a function of known form, depending on parameters repre-
sented by the vector h. The concentration in the tank is
k ¼ V�1 R V

0 kðtjhÞdt. Typical examples for the functions relating the
concentration and the dimension along which we measure the
deballasting process are

kðtjd; cÞ ¼ dctc�1 and kðtjd; c;gÞ ¼ gþ ½ðt � cÞ=d�2;

where d; c and g are parameters (elements of h) to be estimated.
Plots of such functions are displayed in Fig. 1. Here, we assume that
the dimension along which the concentration varies is the debal-
lasting volume. In the left panel, for example, the case
ðd ¼ 5; c ¼ 1Þ corresponds to a uniform concentration throughout
the ballast water discharge, indicating that a Poisson model may
be employed for analysis; the case ðd ¼ 8; c < 1Þ, on the other hand,
represents situations where the concentration decreases along the
deballasting process. In the right panel, the function corresponds
to a situation where there are large concentrations at the beginning
of the discharge, small in the middle, and large again at the end. The
parameter g may be viewed as the minimum concentration occur-
ring in the deballasting process, c is the deballasted volume at
which the minimum concentration is reached and d is associated
with the rate at which the concentration decreases or increases.

Assuming that n aliquots with volumes v1; . . . ;vn (negligible
with respect to the total volume of discharged ballast water, V)
are collected along the deballasted volumes t1; . . . ; tn and that
x1; . . . ; xn represent the associated number of observed organisms,
the corresponding probability function is

Pðxjt;v; hÞ ¼
Yn

i¼1

exp½�v ikðti; hÞ�½v ikðti; hÞ�xi=xi!; ð3Þ

where t ¼ ðt1; . . . ; tnÞ; v ¼ ðv1; . . . ; vnÞ and x ¼ ðx1; . . . ; xnÞ. Maxi-
mum likelihood estimates (MLE) of h may be obtained by maximiz-
ing the likelihood corresponding to (3) and used to obtain an
estimate of k. The covariance matrix of the estimator of h may be
obtained from the Fisher information matrix and the delta method
may be employed to obtain the standard errors of its components
(Sen et al., 2009).

Letting bk denote the MLE of k and SEðbkÞ the corresponding stan-
dard error, the decision rule is to declare non-compliance if the sta-
tistic Z ¼ ðbk � 10Þ=SEðbkÞ > c with the compliance threshold c
obtained from a ¼ PðZ > cÞ, where Z follows a standard normal dis-
tribution, and to declare compliance, otherwise. This procedure,
however, requires a large number n of aliquots.

Unfortunately, there are not many studies designed to identify
the form of the curves representing the variation in the concentra-
tion along the discharged volume; a study paving the way in that
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Fig. 2. Simulated counts of organisms for different volumes (ti) of discharged ballast water using (3) with kðtjd; cÞ ¼ dctc�1; d ¼ 0:05 and c ¼ 2:1 (k ¼ 23:63) in the left panel
and with kðtjd; c;gÞ ¼ gþ ½ðt � cÞ=d�2; d ¼ 40; c ¼ 130 and g ¼ 12:5 (k ¼ 16:31) in the right panel.
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Fig. 1. Plots of the concentration function kðtjhÞ.
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direction is presented in First et al. (2013). We consider two exam-
ples with simulated data using the functions represented in Fig. 1,
letting t correspond to the discharged volume since the beginning
of the deballasting process, assuming a total discharged volume of
V ¼ 270 m3 and taking aliquots with volume v i ¼ 1 m3. We set
kðtjd; cÞ ¼ dctc�1 with d ¼ 0:05 and c ¼ 2:1, so k ¼ dVc�1 ¼ 0:05�
2701:1 ¼ 23:63, and kðtjd; c;gÞ ¼ gþ ½ðt � cÞ=d�2 with d ¼ 40; c ¼
130 and g¼ 12:5, so k¼ gþ ½ðV � cÞ3 þ c3�=3Vd2 ¼ 12:5þ ð1403þ
1303Þ=ð810� 402Þ ¼ 16:31. The data are presented in the Support-
ing Information and depicted in Fig. 2. The MLE of d; c; g and k
along with the corresponding standard errors are presented in
Table 3. Setting a¼ 0:05 it follows that the compliance threshold
is c ¼ 1:64 and since Z ¼ 13:6=0:89¼ 15:34> 1:64 in the first case
and Z ¼ 5:96=2:5¼ 2:39> 1:64 in the second case, we declare
non-compliance for both.
Table 3
Estimates obtained from simulated counts under model (3) with kðtjd; cÞ ¼ dctc�1

with d ¼ 0:05 and c ¼ 2:1 (Case 1), and kðtjd; c;gÞ ¼ gþ ½ðt � cÞ=d�2 with
d ¼ 40; c ¼ 130 and g ¼ 12:5 (Case 2) along with standard errors and 95% confidence
intervals (CI).

Case Parameter Estimate Standard error CI (95%)

Lower limit Upper limit

1 d 0.08 0.03 0.03 0.18
c 2.01 0.07 1.87 2.17
k 23.60 0.89 21.86 25.34

2 d 45.45 6.67 36.10 69.08
c 133.67 10.33 108.38 156.04
g 13.02 1.03 11.07 15.12
k 15.96 2.50 11.07 20.85
2.4. Sampling with heterogeneous concentration under a negative
binomial model

When there is little (or no) information about how the concen-
tration varies along the deballasting process, an alternative is to
consider it as a random variable L following some convenient prob-
ability distribution. A possible approach is to assume that L follows
a gamma distribution, for which the probability density function is

f ð‘jk;/Þ ¼ 1
Cð/Þ

‘/
k

� �/

expð�/‘=kÞ=‘; ‘ > 0;

where CðxÞ ¼
R1

0 tx�1 expð�tÞdt is the gamma function. This implies
that the concentration is EðLÞ ¼ k and that the corresponding vari-
ance is VðLÞ ¼ k2=/ (Johnson et al., 1994). This distribution has been
used in many settings mainly because of its flexibility (see Johnson
et al., 1994 and references therein, for example). Different values of
its two parameters ðk;/Þ correspond to different ways in which the
concentration varies in the ballast tank. Plots of the gamma distri-
bution for different values of the parameters k and / are repre-
sented in Fig. 3. For example, the cases ðk ¼ 5;/ ¼ 20Þ and
ðk ¼ 20;/ ¼ 350Þ correspond to situations where the concentration
in the ballast water discharge varies approximately between 2.5
and 7.5 org m�3, and between 17 and 24 org m�3, respectively.
The case ðk ¼ 18;/ ¼ 3Þ corresponds to situations where the con-
centration in the ballast water discharge varies between 0 and more
than 25 org m�3.

Conditionally on a specific value L ¼ ‘ for the concentration and
on /, assume that the number of organisms (X) in a ballast water
aliquot of w m3 follows a Poisson distribution with mean w‘. This
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implies that (unconditionally) X follows a NB distribution with
mean wk and dispersion parameter /, i.e., with probability function

PðX ¼ kj/;w; kÞ ¼ Cð/þ kÞ
Cðkþ 1ÞCð/Þ

wk
wkþ /

� �k /
wkþ /

� �/

; k;/ > 0;

ð4Þ

for k ¼ 0;1;2; . . .. In this context, EðXÞ ¼ wk and VðXÞ ¼ wkþ ðwkÞ2=
/, indicating that this model may accommodate a possible over-
dispersion.

Suppose that n aliquots of w m3 have been randomly collected
from the discharged ballast water and that the corresponding
number of organisms, X1; . . . ;Xn have independent Poisson distri-
butions conditionally on their means, that, in turn, follow a gamma
distribution. As a consequence, Xi; i ¼ 1; . . . ;n follow NB distribu-
tions and X ¼

Pn
i¼1Xi follows a NB distribution with mean nwk

and dispersion parameter n/, i.e., EðXÞ ¼ nwk ¼ vk and
VðXÞ ¼ nwkþ ðnwkÞ2=n/ ¼ vkþ ðvkÞ2=n/. The reader is referred
to Hilbe (2007) for details. In this case, the compliance threshold
c is determined from

a ¼ P X > cj/;w; k ¼ 10ð Þ and bðkAÞ
¼ P X 6 cj/;w; k ¼ kAð Þ; ð5Þ

with

P X¼ kj/;w;kð Þ¼ Cðn/þkÞ
Cðkþ1ÞCðn/Þ

wk
wkþ/

� �k /
wkþ/

� �n/

; k;/>0;

ð6Þ

for k ¼ 0;1;2; . . .. For large / or n the distribution of X may be
aproximated by a Poisson distribution with mean vk (see Appendix
B for technical details). This is in accordance with the empirical
results mentioned in Frazier et al. (2013). In Fig. 4 we indicate plots
of the NB distribution for different values of k and / along with the
Poisson distribution with the same mean.

An algorithm to determine c and the number n of w m3 aliquots
such that the probability of Type I error and the probability of Type
II error for a given value of k ¼ kA > 10 are pre-specified (assuming
/ is known) is essentially the same as that considered for the
Poisson distribution with the substitution of (2) by (5). Using this
algorithm and setting different limits on a and bð12Þ, we obtained
the required sample volume (v ¼ nw) with w ¼ 0:001 m3 for
different values of /, the corresponding compliance threshold (c)
as well as the power of the procedure to detect different non-
compliant concentrations. The results are displayed in Table 4.
Setting a ¼ 0:05 and bð12Þ ¼ 0:05, for example, the required
minimum sample volume is v ¼ 32:98 m3 and the compliance
threshold is c ¼ 361 when / ¼ 0:1. The results presented in the last
three rows of Table 4 are approximately equal to the results pre-
sented in Table 2, suggesting that for / P 5 we may use the Pois-
son distribution as an approximation to the NB distribution.

We illustrate the methods using data from Bierman et al.
(2012), originally collected by Gollasch et al. (2010). The data, cor-
responding to organisms with minimum dimension between
10 lm and 50 lm per mL, are displayed in the Supporting Informa-
tion. Three aliquots with volume v ¼ 0:27 mL were collected at the
beginning, three at the middle and three at the end of both the
uptake and the discharge process.

Assuming a Poisson model and letting a ¼ 0:05, with a sample
of v ¼ 3� 3� 0:27 mL ¼ 2:43 mL, the compliance threshold is
c ¼ 33. Since the number of observed organisms in the uptake
sample is X ¼ 27, we must declare compliance. For the discharge,
we have X ¼ 100 and the decision would for be non-compliance.
The corresponding power to detect a concentration kA ¼ 12 is
1� bð12Þ ¼ 0:21. If additionally, we set bð12Þ ¼ 0:10, the required
minimum sample volume is v ¼ 23:76 mL and the compliance
threshold is c ¼ 263.

The MLE of / for the NB distribution obtained from the uptake
data is b/ ¼ 100 and suggests that the Poisson distribution is an
adequate option. For the discharge, on the other hand, b/ ¼ 1:66,
suggesting that the Poisson model may not be acceptable.

Assuming a NB model with a ¼ 0:05, with a sample of v ¼ 3�
3� 0:27 mL ¼ 2:43 mL, the compliance threshold is c ¼ 39 (in con-
trast with c ¼ 33 for the Poisson distribution). Since X ¼ 100 in the
uptake sample, the decision would be for declaring non-compli-
ance. Here, the corresponding power to detect a concentration
kA ¼ 12 is 1� bð12Þ ¼ 0:13. If we set bð12Þ ¼ 0:10, the required
minimum sample volume is v ¼ 65:88 mL and the compliance
threshold is c ¼ 728. To compute the MLE, we used the fitdistr

function of the MASS package (R Development Core Team, 2013).

3. Discussion

The IMO Convention on ballast water management was
approved in 2004 but has not been enforced after 10 years (one
of the longest implementation phases in the organization’s history)
partly because many practical issues remain unresolved. By late-
2014, 43 countries corresponding to 32.5% of the world’s merchant
fleet tonnage had ratified the Convention, but a minimum of 35% is
required. One of the most critical dispute is towards a standard-
ized, universally applicable sampling and analytical method for
compliance assessment during port state control inspections (ICS,
2013). Once documented, a faulty performance of an installed bal-
last water treatment system may lead to serious legal penalties to
crew and shipowners, meaning that inspection must be based on
solid grounds. To assess the effective concentration in the ballast
water discharge line, as required by the Convention, the inspection
protocol must rely on sampling, as it is not practical to scan the
entire ballast water volume within the time constraints of mari-
time operations. The IMO Convention provides generic sampling
guidelines; for instance, the G8 guidelines for shipboard evaluation
of treatment systems (IMO, 2004; Gollasch et al., 2007) requires
sampling at three stages of the deballasting process (beginning,
middle and end of the discharge), as an attempt to depict the het-
erogeneous distribution of the concentration within tanks. In
Carney et al. (2013), the authors have shown that a three-stage
sampling effort as described above is insufficient even for low-
volume (1 m3) test tanks, implying that the actual concentration
in the ballast discharge may be quite different from that estimated
via the proposed sampling protocols, including the one currently
recommended by IMO.
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Fig. 4. Plots of the negative binomial distribution for different values of the parameter / along with the Poisson distribution.

Table 4
D-2 regulation required sample volumes (v) in m3, compliance thresholds (c) and power [1� bðkAÞ] to detect non-compliant concentrations (kA > 10) based on a negative
binomial model with / ¼ 0:01; 0:1 and 5.

/ a b Sample volume (v) Compliance threshold (c) Detection power for kA ¼

11.5 12 12.5 13

0.01 0.05 0.05 62.36 682 0.81 0.95 �1 �1
0.05 0.10 49.11 543 0.73 0.90 0.97 �1
0.10 0.05 49.67 537 0.83 0.95 �1 �1
0.10 0.10 37.89 414 0.75 0.90 0.97 �1

0.1 0.05 0.05 32.98 361 0.81 0.95 �1 �1
0.05 0.10 26.03 288 0.72 0.90 0.97 �1
0.10 0.05 26.25 284 0.83 0.95 �1 �1
0.10 0.10 20.03 219 0.75 0.90 0.97 �1

5 0.05 0.05 29.78 326 0.80 0.95 �1 �1
0.05 0.10 23.50 260 0.72 0.90 0.98 �1
0.10 0.05 23.66 256 0.83 0.95 �1 �1
0.10 0.10 18.11 198 0.75 0.90 0.97 �1

10 0.05 0.05 29.78 326 0.80 0.95 �1 �1
0.05 0.10 23.49 260 0.72 0.90 0.98 �1
0.10 0.05 23.66 256 0.83 0.95 �1 �1
0.10 0.10 18.11 198 0.75 0.90 0.97 �1
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Previous studies have suggested that increasing sample
volumes provide greater precision and confidence in concentration
estimates during ballast water testing for compliance (Basurko
et al., 2011; Miller et al., 2011). The frequency of sample collection
from the ballast water discharge is also likely to affect data
accuracy, hence sampling at very frequent intervals (few minutes)
should be required, raising concerns on ship operational delays
(Carney et al., 2013). Such problems in ballast water sampling
and analysis are connected to the heterogeneous distribution of
organisms in ballast water tanks (Murphy et al., 2002). We provide
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evidence that appropriate statistical models may accommodate
different assumptions on the heterogeneity of the concentration
in the tank, paving the way to a more flexible, data-oriented sam-
pling approach. In this context, we propose an algorithm to com-
pute sample size, and specify the decision rule for each scenario.
Threshold values may be computed for determining whether a ship
complies with the D-2 regulation under different precision levels
and sampling protocols. In particular, we suggest that, irrespec-
tively of the distribution of organisms in the ballast water tank, a
Poisson model may be employed to determine the sample vol-
umes, provided it consists of a large number of aliquots collected
along the deballasting process.

More information may be acquired once we gain more expe-
rience on how organisms are distributed in ballast water tanks
and in the discharge (Frazier et al., 2013) and this may definitely
lead to enhanced sampling schemes. The decision-making pro-
cess on the ideal sampling protocol is further complicated by
the combination of large discharge volumes during short time
intervals with the low concentration expected when effective
on board treatment systems are used. Novel monitoring
approaches are urgently needed not only to enhance the actual
process of counting organisms but also to decrease the risk of
unintentional biological invasions through ship ballast water dis-
charge without hampering routine maritime operations. Sam-
pling and analytical techniques for evaluation of ballast water
biology have so far relied on traditional methods derived from
environmental assessment studies. Taxonomic composition, size
determination and concentration estimates have been analyzed
from samples collected with plankton nets, hydrographic bottles
and small pumps, from restricted sampling points such as man-
holes and sounding pipes. Such sampling strategies suffer from
several drawbacks including: (i) in-tank spatial and temporal var-
iability may not be adequately evaluated with commonly-used
sampling gear; (ii) sampling at the discharge line may hardly
be accomplished on a routine basis; (iii) sampling and analysis
are operator-dependent and time-consuming activities; (iv) no
real-time information may be generated during ballast water
operations, rendering monitoring practices a post-hoc verification
practice; and (v) statistical constraints are not fully addressed
when manual sampling strategies represent the only option
available.

New sampling and analysis protocols for ballast water compli-
ance assessment are expected to become available in the near
future, and hopefully the concept of an in-line sampling method
will become feasible as technology advances. Such system should
be capable to record size and concentration data during the ballast
water discharge, and use the data just collected as input to a statis-
tical model similar to the ones proposed here. The model will then
provide estimates of sampling volume and frequency for a subse-
quent data collection interval, in a continuous feedback loop until
a decision on ship compliance may be achieved within acceptable
confidence levels while keeping human supervision to a minimum.
In other words, the future of ballast water monitoring for compli-
ance is in standardized, ship-based automatic or semi-automatic
sampling and analytical protocols, where reliable estimates and
quality control are provided by robust, embedded statistical
models.

The methods proposed here elucidate certain statistical aspects
of ballast water sampling that have been constantly raised in the
literature. The models are applicable to the same sampling
schemes as employed at present, despite the amount of effort
required to collect information on size and concentration at the
necessary frequency and volume. Unfortunately we have no real
world data at present to further assess the adequacy of the pro-
posed models. However, ship-board tests are now under way to
verify the behavior of the different models under contrasting
organisms distributions. We expect that practical results will be
available within one year.

Although other parametric mixtures, such as the Poisson-log-
normal may be considered, the lack of knowledge about the distri-
bution of organisms in the ballast water tank complicates the
choice. We propose to use a nonparametric model based on a
Dirichlet process mixture (see Müller and Quintana, (2004), for
example) to allow for the required flexibility. We are also investi-
gating sequential methods based on the proposed models to test
for compliance with the D-2 norm during the deballasting process.
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Appendix A. Technical details for the results in Section 2.2

For stratum h; Xhi; i ¼ 1; . . . ;nh, follow Poisson distributions
with mean kh and an estimator is bkh ¼ n�1

h

Pnh
i¼1Xhi. The estimator

of k is bk ¼PH
h¼1Wh

bkh. Letting x denote the set of observed values,
x11; . . . ; xHnH , it follows that

fjbkðxÞ � kj > �; x 2 Xg#
[H
h¼1

WhjbkhðxhÞ � khj > �=H; xh 2 Xh

n o
;

where Xh is the sample space associated to the probability model
for stratum h and X ¼

SH
h¼1Xh. Then,

Pðjbk � kj > �Þ 6
XH

h¼1

Pðjbkh � khj > �=WhHÞ 6
XH

h¼1

ah;

and setting �h ¼ �=WhH and a ¼
PH

h¼1ah the result follows.
Appendix B. Technical details on the approximation of the
negative binomial distribution by a Poisson distribution

The characteristic function of the NB distribution in (4) is

½1�wkðeit � 1Þ=/��/
: ðB:1Þ

The limit of (B.1) as / approaches infinity is exp½wkðeit � 1Þ�,
which is the characteristic function of a Poisson distribution with
mean wk. This implies that the NB distribution converges weakly
to a Poisson distribution as / approaches infinity (Sen et al.,
2009), indicating that the NB distribution may be approximated
by a Poisson distribution for large /.

The characteristic function of the NB distribution in (6) is

½1� nwkðeit � 1Þ=n/��n/
: ðB:2Þ

If n!1 and w! 0 so that the value of nw remains equal to v, i.e.,
sampling more and more aliquots with increasing less volume, the
limit of (B.2) is exp½vkðeit � 1Þ�, which is the characteristic function
of a Poisson distribution with mean vk. Therefore the NB distribu-
tion converges weakly to a Poisson distribution (Sen et al., 2009),
indicating that the NB distribution may be approximated by a Pois-
son distribution when more aliquots with smaller volume are
sampled.
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Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.marpolbul.2014.
11.030.
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