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In this article, we introduce a long-term survival model in which the number of
competing causes of the event of interest follows the zero-modified geometric
(ZMG) distribution. Such distribution accommodates equidispersion, underdis-
persion, and overdispersion and captures deflation or inflation of zeros in the
number of lesions or initiated cells after the treatment. The ZMG distribution is
also an appropriate alternative for modeling clustered samples when the num-
ber of competing causes of the event of interest consists of two subpopulations,
one containing only zeros (cure proportion), while in the other (noncure propor-
tion) the number of competing causes of the event of interest follows a geometric
distribution. The advantage of this assumption is that we can measure the cure
proportion in the initiated cells. Furthermore, the proposed model can yield
greater or lower cure proportion than that of the geometric distribution when
modeling the number of competing causes. In this article, we present some
statistical properties of the proposed model and use the maximum likelihood
method to estimate the model parameters. We also conduct a Monte Carlo sim-
ulation study to evaluate the performance of the estimators. We present and
discuss two applications using real-world medical data to assess the practical
usefulness of the proposed model.

K E Y W O R D S

cure rate models, long-term survival model, medical data, Weibull distribution, zero-modified
geometric distribution

1 INTRODUCTION

In medical and epidemiological studies, often interest focuses on studying the effect of concomitant information on the
time to an event, such as death or recurrence of a disease. When the primary interest is to estimate the covariate effect,
the Cox proportional hazards model is commonly used in the analysis of survival time data.1 With the development
of medical and health sciences, the data sets collected from clinical studies pose some new challenges to statisticians.
New statistical models that can incorporate these changes should be investigated. The most prevalent change noted in
several clinical studies is that more patients respond favorably to treatment or they were not susceptible to the event
of interest in the study, so they are considered cured or have prolonged disease-free survival. The modeling of the cure
fraction (proportion of cured patients) has been widely developed in the biostatistics literature. Historically, one of
the most famous cure rate models is the mixture cure model introduced by Berkson and Gage.2 This model has been
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extensively discussed by several authors, including References 3-7. Further development for cure rate models was
obtained in two ways:

1. In a competing risk scenario. Initial works in this line are References 8 and 9, where the promotion time cure model or
bounded cumulative hazard model in cancer relapse settings was proposed, assuming that a latent biological process of
N latent carcinogenic tumor cells generates the observed failure (relapse), which is given by the minimum time related
to each of the N tumor cells. In such a proposal, the authors considered the Poisson distribution to model N. We remark
that, in this context, N = 0 is defined as a “cured individual.” Later, different proposals have been considered for N in
the literature, namely, negative binomial and geometric,10 COM-Poisson,11 power series,12 and Yule-Simon.13 Other
extensions in a cure rate model framework consider a more general activation scheme (not only the minimum, see
References 14-16 for details) and a destructive scheme (ie, considering that each of the N initial cells has a probability
p of being “activated”17,18). To avoid identifiability problems under this setting, a usual assumption is that the cure
term is modeled by covariates (see References 19,20 for details).

2. In a frailty model context. Studies on frailty models generally assume a nonnegative and continuous frailty random
variable. However, a continuous frailty distribution does not allow the existence of zero risks. In a cure rate model
context, frailty “zero” can be interpreted as the existence of a subgroup of nonsusceptible individuals where the event
of interest has not happened even after a long period of observation. In this context,21,22 emphasized the difficulty of
obtaining models in which the case of homogeneous frailty is a natural special case of the general model in which
frailty varies randomly across units Let W be a continuous random variable following a frailty distribution, then to
obtain identifiability we need E(W) < ∞, where it is often convenient to impose E(W) = 1 by a suitable constraint on
the parameters of the frailty distribution. The same identifiability problem does not arise with discrete frailty because
the frailty distribution lacks a scale parameter. However, this is also a disadvantage as the same approach of fixing
E(W) and allowing Var(W) = 1 to govern the strength of the frailty cannot be applied. References 23,24 discuss some
strategies to accommodate zero frailty, for example, if W = 0 is used to describe long-term survivors, then units will
never fail. Other examples of this approach are given in References 12,25-28.

A third and recent way to introduce cure rate models is known in the literature as the improper models introduced
by Balka et al.29 In these models, the parameter space of the distribution is extended producing an improper model in
which the cumulative distribution function no longer approaches 1, but to p ∈ (0, 1). More details in improper mod-
els extensions can be found in References 30-34. However, differently from the competing risks or frailty approaches,
improper models do not have an underlying motivation and further connections with real problems are more compli-
cated. We highlight that the first scheme is more flexible than the one that imposes the restriction E(W) = 1 (the second
scheme), despite in some cases, where covariates are not available, the second approach is implied. As mentioned, under
the competing risks scheme, the cure depends on P(N = 0), which in turn depends on the available covariates. However,
in certain problems, there could be relevant information that cannot be measured by the researchers, such as genetic
information (biology), quality of life (economics), and wisdom (psychology). Disregarding that information could lead
to wrong conclusions. For this reason, the main objective of this article is to propose a cure rate model by incorporating
a structure of inflation or deflation of zeros among the initiated cells. In other words, P(N = 0) is modeled by an extra
parameter.

Hence, we assume that the number of competing causes of the event of interest follows an extension of the geometric
distribution by including an additional parameter 𝜋 (the ZMG distribution). The advantage of the proposed model is that
the ZMG distribution is very flexible and has a natural interpretation in terms of both the “zero-inflated” or “zero-deflated”
proportion of cure. Moreover, the proposed model also captures equidispersion, underdispersion, and overdispersion in
the data, providing more flexibility in the cure rate model context. Furthermore, the cure proportion of the proposed
model can be greater or lower than the cure proportion when the number of competing causes is modeled by the geo-
metric distribution. Therefore, the ZMG distribution becomes the most appropriate alternative for modeling the number
of competing causes of the event of interest in comparison with the usual discrete distributions already known in the
literature.

This article is organized as follows: this is the introductory section. In Section 2, we introduce the proposed
long-term survival model, discuss some of its properties, and present the estimation method for the model param-
eters. In Section 3, we conduct a Monte Carlo simulation study to evaluate the performance of the estimators.
We also present and discuss two applications using real-world data sets. Finally, some conclusions are given
in Section 4.



LEÃO et al. 3

2 ZMG CURE RATE REGRESSION MODEL

2.1 Formulation

The ZMG distribution has been studied by some authors. Recently, Reference 35 introduced a first-order nonnegative
integer-valued autoregressive process with zero-modified geometric innovations. We introduce the cure rate model where
the number of competing causes is modeled by the ZMG distribution. In what follows, we shall briefly present the ZMG
distribution. Let N be a discrete random variable (RV) following a ZMG distribution with parameters 𝜇 > 0 and 𝜋 ∈
(−1∕𝜇, 1). More specifically, we assume that N has a probability mass function given by

Pr(N = n;𝜇, 𝜋) ≡ Pr(N = n) =

{ 1+𝜋𝜇
1+𝜇

, if n = 0,
(1 − 𝜋) 𝜇n

(1+𝜇)n+1 , if n = 1, 2,…
. (1)

We shall denote this distribution as ZMG(𝜋, 𝜇). The probability generating function (PGF) of N, denoted by
𝜑N(s;𝜇, 𝜋) = E[sN], is given by

𝜑N(s;𝜇, 𝜋) =
1 + 𝜋 𝜇(1 − s)
1 + 𝜇(1 − s)

= 𝜋 + 1 − 𝜋

1 + 𝜇(1 − s)
. (2)

Equation (2) shows that, for 𝜋 ∈ [0, 1), the distribution of N is a mixture of a degenerate distribution at zero with
mass 𝜋 and a geometric distribution with mean 𝜇 and mass 1 − 𝜋. For 𝜋 ∈ (0, 1) we have N

d
=N1 ⋅ N2, where N1 and N2

are independent random variables following a Bernoulli(𝜋) distribution with mean 0 < 𝜋 < 1 and a geometric(1∕(1 + 𝜇))
distribution with mean 𝜇 > 0, respectively.

The mean and variance of N are

E(N) ≡ 𝜇N = 𝜇(1 − 𝜋) and Var(N) ≡ 𝜎2
N = 𝜇(1 − 𝜋)[1 + 𝜇(1 + 𝜋)],

respectively. Thus, the dispersion index, which is the variance-to-mean ratio, is given by

IN = 𝜇N

𝜎2
N

= 1 + 𝜇(1 + 𝜋).

Here, the model is appropriate for equidispersed data when 𝜋 = −1, underdispersion when 𝜇 ∈ (0, 1) and 𝜋 ∈ [−1∕𝜇,−1),
and overdispersion when 𝜋 ∈ (−1, 1). Furthermore, for 𝜋 ∈ (−1∕𝜇, 0) and 𝜋 ∈ (0, 1), we have a zero-deflated model and
a zero-inflated model for the geometric distribution, respectively. Different values of 𝜋 lead to different modifications of
the ZMG distribution:

1. If 𝜋 = −1∕𝜇, then the distribution in (1) becomes the zero-truncated geometric distribution, where the parameter 𝜋 is
not a model parameter, that is, there is no chance of getting a zero observation in the sample.

2. For 𝜋 ∈ (−1∕𝜇, 0), we have the zero-deflated geometric distribution, that is, a geometric distribution with a lower
proportion of zeros.

3. If 𝜋 = 0, then the corresponding distribution is the geometric distribution,
4. For 𝜋 ∈ (0, 1), we have the zero-inflated geometric distribution, which is a geometric process with a higher proportion

of zeros.
5. If 𝜋 = 1, then the corresponding zero-modified distribution is the one degenerated at zero.

Let N denote the number of competing causes related to the occurrence of an event of interest for an individual in
the population (in a cancer context, N represents the carcinogenic cells of the individual). Assuming that N ∼ ZMG(𝜋, 𝜇)
and conditional on N = n, we have that Yj's are independent and identically distributed random variables representing
the promotion times of the competing causes, for j = 1,… ,n, with survival function (SF) S(⋅; 𝝃), where 𝝃 is a vector of
parameters. S(⋅; 𝝃) is proper in the sense that limt→∞S(t; 𝝃) = 0. Moreover, we assume that N is independent of Y1,… ,Yn,
and the observable time-to-event is defined as T = min{Y1,… ,YN} for N ≥ 1, and T = ∞ for N = 0, leading to a cured
fraction denoted by p0.10 For heterogeneous populations, we consider a set of p-dimensional vectors of covariates related
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F I G U R E 1 Relation for the time-to-event in cured and noncured individuals when 𝜋 ∈ [0, 1)

to the cure rate, say x⊤
i = (xi1,… , xip), which can be introduced (conveniently) through the parameter 𝜇 as

𝜇i = exp
(

x⊤
i 𝜷

)
, i = 1,… ,n,

where 𝜷⊤ = (𝛽1, 𝛽2,… , 𝛽p) is a vector of unknown parameters. Under this setting and for the cases where 𝜋 ∈ (0, 1), 𝜋 is
defined as the proportion of cured individuals in the population that cannot be explained by the covariates, that is, such
individuals are cured by (unobservable) biological, social, economic, and so on, processes related to the problem or simply
by nonmeasured information. On the other hand, in the 1 − 𝜋 remaining of the population, the covariates can explain
the underlying mechanism based on the geometric distribution for the number of concurrent causes, where they arise
naturally susceptible individuals but also another part of cured individuals (see Equation (4)). Figure 1 illustrates this idea,
where 𝜇i represents the mean of the individuals that can be explained by the covariates. Therefore, exp(𝛽k), k = 1,… , p,
can be interpreted as the relative increment (or decrement) to an observation that can be explained by covariates when
its kth component is increased by one unit and the others are fixed.

Using (1), the probabilities of N = 0 and N ≥ 1 are

𝜃 = Pr(N = 0) = 1 + 𝜋 𝜇

1 + 𝜇
and 1 − 𝜃 = Pr(N ≥ 1) = 𝜇(1 − 𝜋)

1 + 𝜇
,

respectively.
The run length of zeros of N, say M, follows a geometric distribution with termination probability 𝜃, that is, Pr(M =

m) = 𝜃m−1(1 − 𝜃), m ≥ 1. Thus, the average run length of zeros of M is given by E(M) = (1 + 𝜇)∕𝜇(1 − 𝜋). When the
number of competing causes is modeled by the geometric distribution, M0, the expected run length of zeros is E(M0) =
(1 + 𝜇)∕𝜇. Note that E(M) = (1 − 𝜋)−1E(M0). Thus, E(M) ≥ E(M0) for 𝜋 ∈ [0, 1) and E(M) < E(M0) for 𝜋 ∈ (−1∕𝜇, 0).

Under this setup, the population SF, Spop(⋅), can be computed as (see Reference 10 for details)

Spop(t; 𝜼) = 𝜑N(S(t; 𝝃);𝜇, 𝜋) =
1 + 𝜋 𝜇 F(t; 𝝃)
1 + 𝜇 F(t; 𝝃)

, t > 0, (3)

where 𝜼 = (𝜇, 𝜋, 𝝃) and F(t; 𝝃) = 1 − S(t; 𝝃). Thus,

Spop(t; 𝜼) = 𝜋 + 1 − 𝜋

1 + 𝜇 F(t; 𝝃)
= 𝜋 + (1 − 𝜋)SG

pop(t; 𝜼), t > 0, (4)

where SG
pop(t; 𝜼) = 1∕[1 + 𝜇 F(t; 𝝃)] corresponds to Spop(⋅; 𝜼)when 𝜋 = 0. Equation (4) shows that the population SF can be

expressed as a mixture of a degenerate distribution at one (corresponding to the survival function of a “cured” individual)
with mass 𝜋 and the population SF, considering N ∼ Geom(1∕(1 + 𝜇)), with mass 1 − 𝜋.
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From (1) and (3), the cured fraction (p0) is given by

p0 = lim
t→∞

Spop(t; 𝜼) =
1 + 𝜋 𝜇

1 + 𝜇
= 𝜋 + 1 − 𝜋

1 + 𝜇
= 𝜋 + (1 − 𝜋)pG

0 , (5)

where p0 denotes the proportion of “cured” or “immune” individuals in the population from which the sample was
collected and pG

0 = limt→∞SG
pop(t; 𝜼) = 1∕(1 + 𝜇).

Consider p0 and pG
0 the proportions of “cured” or “immune” individuals in the population when the number of com-

peting causes is modeled by the ZMG and geometric distributions, respectively. Then, p0 ≥ pG
0 if 𝜋 ∈ [0, 1) and p0 < pG

0 if
𝜋 ∈ [1∕𝜇, 0). The above result shows that the proportion of cure, p0, can be greater or lower than the proportion of cure
when the number of competing causes is modeled by the geometric distribution.

The probability density function (PDF) associated to (3) reduces to

fpop(t; 𝜼) =
𝜇(1 − 𝜋)f (t; 𝝃)
[1 + 𝜇 F(t; 𝝃)]2 , t > 0, (6)

where f (t; 𝝃) = −dS(t; 𝝃)∕dt denotes the (proper) PDF of the time-to-event T in (3) with hazard rate (HR) function

hpop(t; 𝜼) =
𝜇(1 − 𝜋)f (t; 𝝃)

[1 + 𝜇 F(t; 𝝃)][1 + 𝜋 𝜇 F(t; 𝝃)]
= (1 − 𝜋)

1 + 𝜋 𝜇 F(t; 𝝃)
⋅ hG

pop(t; 𝜼), t > 0, (7)

where hG
pop(t; 𝜼) = 𝜇 f (t; 𝝃)∕[1 + 𝜇 F(t; 𝝃)] corresponds to hpop(⋅; 𝜼) when 𝜋 = 0. Thus,

lim
t→0

hpop(t; 𝜼) = (1 − 𝜋) lim
t→0

hG
pop(t; 𝜼) and lim

t→∞
hpop(t; 𝜼) =

1 − 𝜋

1 + 𝜋 𝜇
lim
t→∞

hG
pop(t; 𝜼).

It follows from (7) that

(1 − 𝜋) hG
pop(t; 𝜼) ≤ hpop(t; 𝜼) ≤

1 − 𝜋

1 + 𝜋 𝜇
hG

pop(t; 𝜼) for 𝜋 ∈ (−1∕𝜇, 0
]

and
1 − 𝜋

1 + 𝜋 𝜇
hG

pop(t; 𝜼) ≤ hpop(t; 𝜼) ≤ (1 − 𝜋) hG
pop(t; 𝜼) for 𝜋 ∈ [0, 1) .

The SF for the noncured population, say S∗(t; 𝜼) = Pr(T > t|N ≥ 1; 𝜼), is given by

S∗(t; 𝜼) =
S(t; 𝝃)

[1 + 𝜇 F(t; 𝝃)]
, t > 0.

We note that S∗(0; 𝜼) = 1 and S∗(∞; 𝜼) = 0, then we have that S∗(t; 𝜼) is a proper SF. The PDF and HR functions related
to the susceptible individuals reduce to

f ∗(t; 𝜼) = −dS∗(t)
dt

=
(1 + 𝜇)f (t)
[1 + 𝜇 F(t)]2 , t > 0,

and

h∗(t; 𝜼) =
(1 + 𝜇)f (t; 𝝃)

S(t; 𝝃)[1 + 𝜇 F(t; 𝝃)]2 = 1 + 𝜇

[1 + 𝜇 F(t; 𝝃)]2 ⋅ h(t; 𝝃), t > 0.

Note that the parameters 𝜋 and 𝜇 control the cure rate of the model (see Equation (5)). However, the distribution related
to the noncured individuals does not depend on 𝜋.

2.2 Identifiability of the model

Identifiability of cure rate models is a critical point. Reference 19 discussed the identifiability of the mixture model in
Reference 2 and the promotion time cure rate model in References 8,9, and Reference 20 revisited such discussion in a
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more general framework for the cure rate models. The ZMG cure rate model is identifiable if 𝜼1 ≠ 𝜼2 implies Spop(t; 𝜼1) ≠
Spop(t; 𝜼2), ∀t > 0. In particular, taking t = +∞ implies that the cure rate generated by 𝝃1 ≠ 𝝃2 is different. As in any
cure rate model, if the cure rate is not modeled by covariates then the model is not identifiable. This can be seen taking
𝝃1 =

(
𝜋 = q(1+𝜇)−1

𝜇
, 𝜇

)
and 𝝃2 =

(
𝜋, 𝜇 = 1−q

q−𝜋

)
, for any q ∈ (0, 1), 𝜇 > 0, and 𝜋 ∈ (−1∕𝜇, 1), because both pairs generate

the same p0 = q.
Suppose that a (nonnull) set of covariates x are available, which are considered through 𝜇 = exp(x⊤𝜷). The population

survival function in (3) can also be written as

Spop(t; 𝜼) =
1 + 𝜋𝜇

1 + 𝜇
⏟⏟⏟

p0(𝜷,𝜋)

+ 𝜇(1 − 𝜋)
(1 + 𝜇)
⏟⏞⏟⏞⏟

1−p0(𝜷,𝜋)

× (1 + 𝜇)
(1 + 𝜇F(t; 𝝃))
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

S∗(t;𝜷,𝝃)

.

Therefore, the ZMG cure rate model can be seen as a mixture model with cure rate p0(𝜷, 𝜋) and survival function for
the time-to-event in the susceptible individuals S∗(t; 𝜷, 𝝃). Let ||p0||𝜷 = sup{p0(𝜷, 𝜋) ∶ 𝜋 ∈ (−1∕𝜇, 1]}. It can be shown
that ||p0||𝜷 = 1. Therefore, by point 1 from theorem 1 in Reference 20, the ZMG cure rate model (considering covariates
through the parameter 𝜇) is identifiable, independently from the specified form to F(⋅; 𝝃).

There is a vast literature regarding parametric approaches in cure rate models. To name a few, References 2-4,36 for
the mixture model, References 9,37 for the promotion time cure rate model, and References 13,18,38 for other cure rate
models. However, advances in nonparametric techniques are scarce in the literature. This is explained (partially) by the
difficulty to propose a nonparametric estimator in each cure rate model. For instance, in the mixture model context,
References 39-41 considered a nonparametric estimator for the failure time distribution of uncured individuals based on
proportional hazard models and the Kaplan-Meier (KM) estimator, respectively. In the promotion time cure rate model,
Reference 42 proposed to model F (which in this case represents the failure time distribution of the concurrent causes)
using P-splines.

On the other hand, for many biological problems, the Weibull model is enough to be considered for this function
(we shall refer to this as the ZMGWEcr model). As we will show in the application section, the ZMGWEcr model is a
very competitive model in many practical situations. However, we leave the option open to use the ZMG under other
distributions with positive support or even a nonparametric structure.

2.3 Estimation

In order to estimate the model parameters, we utilize the maximum likelihood (ML) method. We consider the situation
when the time to an event is not completely observed and is subject to right censoring. Let ci be the censoring time for
the ith individual. We observe ti = min(yi, ci) and 𝛿i = I(yi ≤ ci), where 𝛿i = 1 if yi is a time-to-event and 𝛿i = 0 if yi is
right-censored, i = 1,… ,n. Based on n observed vectors (y1, 𝛿1, x⊤

1 ),… , (y1, 𝛿n, x⊤
n ), the corresponding likelihood function

under uninformative censoring is expressed as

L(y;𝝑) =
n∏

i=1
[fpop(yi;𝝑)]𝛿i[Spop(yi;𝝑)]1−𝛿i , (8)

where 𝝑 = (𝝃, 𝜷)⊤, Spop(yi;𝝑), and fpop(yi;𝝑) are given in (3) and (6), respectively. To model the time-to-event for the
concurrent causes, we can consider any asymmetric distribution. In the simulation study, we consider the Weibull (WE)
distribution for illustrative purposes. Henceforth, using the SF in Equation (3) together with the WE distribution we
have ZMGWEcr model. The PDF and CDF functions for the WE distribution, denoted by T ∼ WE(𝜆, 𝛾), are given by
f (t; 𝜆, 𝛾) = 𝜆 𝛾 t𝛾−1e−𝜆 t𝛾 and S(t; 𝜆, 𝛾) = exp (−𝜆 t𝛾 ), respectively, where 𝛾 > 0 is the shape parameter and 𝜆 > 0 is the scale
parameter of the distribution.

The ML estimators are obtained using numerical methods since equating the first-order log-likelihood derivatives to
zero leads us to a complicated system of nonlinear equations. We can easily perform the maximum likelihood estima-
tion by using standard nonlinear maximization procedures found in most statistical and data analysis packages. Here,
we use the R software by its functions optim (or optimx); see www.r-project.org and Reference 43. Such procedures
require initial guesses for the parameters to be initialized. As 𝜋 = 0 corresponds to the geometric cure rate model (see

www.r-project.org
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References 36 for details), a good alternative to initialize the procedure for the ZMGWEcr model (or any distribution for
the time-to-event of the concurrent causes) is to take the ML estimators of the geometric cure rate model with the same
distribution for S(⋅; 𝝃) (WE or any other). A detailed procedure for obtaining the ML estimators in such model is described
in Reference 44.

3 NUMERICAL APPLICATIONS

In this section, we shall report the results of a Monte Carlo (MC) simulation study we conducted to evaluate the per-
formance of the ML estimators of the proposed model parameters. We assume that the time-to-event of interest follows
a WE distribution. We also show the applicability of the proposal by presenting and discussing two applications using
real-world medical data sets.

3.1 A simulation study

For the time-to-event for the concurrent causes, we consider the WE model with parameters 𝜆 = 1 and 𝛾 = 2. The sim-
ulation scenario considers sample sizes n ∈ {200, 400, 1000, 2000}, values of parameter 𝜋 ∈ {−0.20, 0.20} and 5000 MC
replications. For each individual, we also consider a covariate x generated from a Bernoulli distribution with parame-
ter 0.5, which was included in 𝜇i = exp(𝛽0 + 𝛽1xi). Also, 𝛽0 = 0.50 and 𝛽1 = −1.00, producing a cure fraction for the two
levels of x, say p00 and p01 for the levels x = 0 and x = 1, respectively. Such values are p00 = 0.253 and p01 = 0.547 for
𝜋 = −0.2, and p00 = 0.502 and p01 = 0.698 for 𝜋 = 0.2. We used Algorithm 1 to generate observed times and censoring
indicators.

Algorithm 1. Generator of random numbers from the ZMG-G model

1: Fix the values of the parameters and of the cure fraction for each group p0 and p1;
2: Obtain a random number of the covariate x from X ∼ Bernoulli(1∕2); if the covariate is 0,then generate Wi ∼

Bernoulli(1 − p0);
3: If Wi = 0, y∗ = ∞. If Wi = 1, then y∗ is the root of G(y) = u, where u ∼ Uniform(0, 1 − p0). Here, G(⋅) is the cumulative

distribution function of the baseline distribution chosen for the time of occurrence of an event of interest;
4: Repeat steps 1 to 3 using p1 instead of p0. If in the third step the value of the covariate is 1 go to step 5;
5: Generate u∗

i ∼ Uniform(0,max(y∗i )), considering only finite values of yi;
6: Obtain yi = min(yi,ui). If yi > ui, then 𝛿i = 1, otherwise 𝛿i = 0;
7: Repeat steps 1 to 6 until the required number of data has been generated.

Table 1 shows the empirical mean (EM) and the mean squared error (MSE) of the ML estimators for each value of the
parameters and sample sizes considered. Note that, as the sample size increases, the ML estimators of the cured fraction
become more efficient. In general, all of these results show the good performance of the proposed model.

3.2 Applications to medical modeling

In this subsection, we shall apply the proposed model in two real data sets. Because of the genesis of the Weibull distribu-
tion, the medical data are by excellence ideally modeled by this distribution.13,17 Thus, the use of the Weibull distribution
for fitting these two data sets is well justified. The required numerical evaluations for the data analysis were performed
using the R software.

3.2.1 Melanoma data

The first real-world medical data set corresponds to the survival time after an operation for removal of a malignant
melanoma (ranging from 0.0274 to 15.25 years) until the patient's death, which is possibly censored. The data set con-
tains n = 205 patients and is available in the timereg package of the R software; www.r-project.org. The explanatory

www.r-project.org
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T A B L E 1 MC simulation results of the ML estimators (MSE in parentheses) for the ZMGWEcr model

Sample sizes EM

(censoring rates) �̂� �̂� �̂� 𝜷0 𝜷1 p̂00 p̂01

(𝜋, 𝜆, 𝛾, 𝛽0, 𝛽1, p00, p01) = (−0.2, 1, 2, 0.5, −1.0, 0.2530, 0.5470)

200 (49.05%) −0.5852 1.0302 2.5674 0.5528 −1.0626 0.2516 0.5354

(1.9553) (0.1152) (2.1930) (1.3160) (0.3497) (0.0564) (0.0730)

400 (47.77%) −0.4927 1.0058 2.0570 0.3782 −0.9944 0.2533 0.5447

(0.9422) (0.0781) (0.5504) (0.7966) (0.2428) (0.0366) (0.0428)

1000 (46.64%) −0.2663 1.0021 2.0077 0.4534 −0.9919 0.2539 0.5456

(0.2571) (0.0481) (0.2929) (0.4265) (0.1532) (0.0222) (0.0254)

2000 (45.92%) −0.2205 1.0027 2.0123 0.4972 −1.0035 0.2530 0.5461

(0.1439) (0.0334) (0.1956) (0.2802) (0.1079) (0.0154) (0.0175)

(𝝅, 𝝀, 𝜸, 𝜷0, 𝜷1,p00,p01) = (0.2, 1, 2, 0.5, −1.0, 0.502, 0.698)

200 (66.62%) 0.5558 1.0278 3.1179 0.4084 −1.0556 0.4986 0.6892

(3.7318) (0.144) (5.0235) (2.0062) (0.4370) (0.0623) (0.0708)

400 (65.82%) 0.1072 1.0162 2.2926 0.4185 −1.0134 0.5030 0.6938

(1.4043) (0.0999) (1.3125) (1.1845) (0.3123) (0.0408) (0.0419)

1000 (64.65%) 0.1135 1.0068 2.0646 0.4655 −1.0003 0.5026 0.6956

(0.3162) (0.0601) (0.4002) (0.5630) (0.1946) (0.0245) (0.0236)

2000 (64.18%) 0.1738 1.0023 2.0147 0.4850 −1.0012 0.5022 0.6973

(0.1356) (0.0416) (0.2518) (0.3597) 0.1373 (0.0171) (0.0161)
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F I G U R E 2 Fitted SF (left) and TTT plot (right) for melanoma data

variables are: tumor thickness (xi1, in mm, mean = 2.92 and SD = 2.96); ulceration (xi2, absent [115 patients] and present
[90 patients]); and gender (xi3, male [79 patients] and female [126 patients]). Figure 2 (left) shows the KM estimate of the
SF for the malignant melanoma data. We observe that the estimated curve stabilizes in the levels above 0.65, suggesting
that the patients censored at the end of the experiment may be immune to the risk in question or were cured during the
experiment.

A descriptive summary of the observed times (in years) provides the following sample values: median = 5.49,
mean = 5.90, SD = 3.07, coefficient of variation (CV) = 52.12, coefficient of skewness (CS) = 0.33, coefficient of
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T A B L E 2 ML estimates (corresponding estimated
asymptotic SE in parentheses) for the MWEcr, GWEcr, and
ZMGWEcr models along with model selection measures
and respective P-values in brackets; melanoma data

Estimate MWEcr GWEcr ZMGWEcr

�̂� — — 0.324 (0.121)

�̂� 1.599 (0.204) 1.938 (0.235) 2.189 (0.309)

�̂� 4.726 (0.631) 6.219 (1.169) 7.487 (2.039)

𝛽0 1.866 (0.338) −1.915 (0.350) −1.223 (0.595)

𝛽1 −0.166 (0.078) 0.178 (0.054) 0.240 (0.073)

P-value [.034] [.001] [0.001]

𝛽2 −1.498 (0.416) 1.596 (0.356) 1.871 (0.483)

P-value [<.001] [<.001] [<.001]

AIC 431.076 421.003 419.346

BIC 447.671 437.618 439.283

kurtosis (CK) = −0.28, whereas their minimum and maximum times are 0.0274 and 15.25, respectively. From this
summary, we observe the positively skewed nature and the moderate kurtosis level of the data distribution. The
identification of the shape of an HR can be obtained by the scaled total time on test (TTT) function.45 Figure 2
(right) suggests an increasing HR for the observed times. Therefore, the Weibull distribution is a good candidate
since it allows the modeling of constant, increasing, and decreasing HRs. Also, the Weibull distribution is one of
the most used distributions in survival and reliability analysis because of its good properties and flexibility in data
modeling.

Table 2 provides the ML estimates with standard errors (SE) for the mixture Weibull cure rate (MWEcr), geometric
Weibull cure rate (GWEcr), and ZMGWEcr models, along with two goodness-of-fit statistics: Akaike information criterion
(AIC) and Bayesian information criterion (BIC).46,47 It is noteworthy that the ZMGWEcr model nests the other models.
Notice that the ZMGWEcr model presents the smallest AIC values, suggesting that this model provides the best fit to
these data. We also highlight that 32.4% of the population is cured after the removal of the malignant melanoma by causes
that cannot be explained by the presence/absence of ulceration and tumor thickness. Such percentage is approximately
half of the cured individuals visualized in the KM estimator in Figure 2, where covariates are ignored. Differently, for
individuals where covariates can explain the underlying latent process, the expected value for the number of carcinogenic
cells increases exp(0.239) ≈ 1.27 times for each cm that increases the tumor and exp(1.868) ≈ 6.48 times for individuals
with ulceration, when compared with individuals without ulceration. We test the null hypothesis 0 ∶ GWEcr against
the alternative hypothesis 1 ∶ ZMGWEcr, that i s, 0 ∶ 𝜋 = 0 against 1 ∶ 𝜋 ≠ 0. We obtained a likelihood ratio (LR)
test statistic equal to 3.657 (P-value = .056). Thus, the null hypothesis is rejected at 10% of significance level, favoring the
ZMGWEcr model. Figure 3 contains quantile-quantile (QQ) plot with normalized randomized quantile (RQ) residuals48

for the ZMGWEcr model, indicating that the normalized randomized quantile residuals present a good agreement with
the  (0, 1) distribution.

3.2.2 Blood and marrow transplantation data

The second real-world data set comes from the European Society for Blood and Marrow Transplantation (EBMT) and
corresponds to the time in years from transplantation to relapse (ranging from 0.00082 to 17.26 years). The data set
contains 2279 patients transplanted at the EBMT between 1985 and 1998. The data set is available in the mstate pack-
age of the R software. We considered the covariate that indicates the presence/absence of Prophylaxis (xi1, yes [540
patients] and no [1730 patients]); descriptive statistics of the observed lifetimes from the mentioned data are median
= 3.46, mean = 4.48, SD = 4.21, CV = 93.82, CK = −0.46, and CS = 0.76, indicating the positively skewed nature and
high kurtosis level of the data distribution, whereas their minimum and maximum times are 0.0082 and 17.26, respec-
tively. Figure 4 shows the fitted SF by KM and the TTT plot for these data. Note that, according to Figure 4 (left),
the estimated curve stabilizes in the levels above 0.75, indicating that the censored patients at the end of the experi-
ment may be immune to the risk in question or were cured during the experiment. The TTT plot displayed in Figure 4
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F I G U R E 4 Fitted SF (left) and TTT plot (right) for EBMT4 data

(right) suggests an increasing HR for the observed lifetimes, which again justifies the use of the Weibull distribution as a
baseline HR.

The ML estimates with corresponding SE of the model parameters and model selection measures are reported in
Table 3. The ZMGWEcr regression model presents the smallest AIC and BIC values, suggesting that the proposed model
provides the best fit to this data set. In addition, from the LR test, we obtain an LR test statistic equal to 82.26 (P-value
< .001), favoring the ZMGWEcr model. Figure 5 displays the QQ plot with normalized randomized quantile residuals for
the ZMGWEcr model. This graphical plot shows the notorious agreement, in terms of fitting to the data, of the ZMGWEcr
regression model. On the other hand, 77.9% of the cured individuals (almost all of the cured individuals according to the
KM estimator in Figure 4) is not explained by the prophylaxis. Finally, for patients where the prophylaxis can explain the
subjacent process, the mean of concurrent causes for individuals with prophylaxis is exp(−0.506) ≈ 0.60 times the mean
of concurrent causes for individuals without prophylaxis.

4 CONCLUDING REMARKS

In this article, we proposed a new model for survival data assuming competing causes of the event of interest and
following the zero-modified geometric distribution. More specifically, we assumed that N belongs to a zero-modified
distribution, which includes the geometric distribution as a particular case. The ZMG distribution is an appropriate



LEÃO et al. 11

F I G U R E 5 Quantile-quantile (QQ) plot with envelope for RQ residuals for
the ZMGWEcr model; blood and marrow transplantation data
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T A B L E 3 ML estimates (corresponding estimated
asymptotic SE in parentheses) for the MWEcr, GWEcr, and
ZMGWEcr models along with model selection measures and
respective P-values in brackets; blood and marrow
transplantation data

Estimate MWEcr GWEcr ZMGWEcr

�̂� — — 0.786 (0.014)

�̂� 1.027 (0.038) 1.085 (0.040) 1.707 (0.084)

�̂� 1.332 (0.077) 1.547 (0.092) 5.615 (0.322)

𝛽0 1.118 (0.115) −1.084 (0.113) 3.099 (0.338)

𝛽1 0.287 (0.134) −0.308 (0.129) 0.687 (0.200)

P-value [.032] [.017] [<.001]

AIC 2671.464 2662.165 2581.907

BIC 2694.390 2685.091 2610.564

alternative for modeling clustered samples when the number of competing causes of the event of interest consists of
two subpopulations, one containing only zeros (cure proportion), while in the other (noncure proportion) the number
of competing causes of the event of interest follows a geometric distribution. The advantage of this assumption is that
we can measure the proportion of cure in the initiated cells. We discussed estimation and associated inference by maxi-
mum likelihood. In the empirical applications, we discovered that the new cure rate model provided the best fit among
other common models in the literature. We hope the proposed model attracts the attention of practitioners in survival
analysis.
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